--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: fnet-large-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6425992779783394 --- # fnet-large-finetuned-rte This model is a fine-tuned version of [google/fnet-large](https://huggingface.co./google/fnet-large) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7105 | 1.0 | 623 | 0.6887 | 0.5740 | | 0.6714 | 2.0 | 1246 | 0.6742 | 0.6209 | | 0.509 | 3.0 | 1869 | 0.7528 | 0.6426 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3