--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: fnet-large-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8259803921568627 - name: F1 type: f1 value: 0.8798646362098139 --- # fnet-large-finetuned-mrpc This model is a fine-tuned version of [google/fnet-large](https://huggingface.co./google/fnet-large) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 1.0872 - Accuracy: 0.8260 - F1: 0.8799 - Combined Score: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5656 | 1.0 | 917 | 0.6999 | 0.7843 | 0.8581 | 0.8212 | | 0.3874 | 2.0 | 1834 | 0.7280 | 0.8088 | 0.8691 | 0.8390 | | 0.1627 | 3.0 | 2751 | 1.1274 | 0.8162 | 0.8780 | 0.8471 | | 0.0751 | 4.0 | 3668 | 1.0289 | 0.8333 | 0.8870 | 0.8602 | | 0.0339 | 5.0 | 4585 | 1.0872 | 0.8260 | 0.8799 | 0.8529 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3