--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - accuracy model-index: - name: bert-base-cased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8410292921074044 --- # bert-base-cased-finetuned-mnli This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5721 - Accuracy: 0.8410 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co./google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co./bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name mnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-mnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5323 | 1.0 | 24544 | 0.4431 | 0.8302 | | 0.3447 | 2.0 | 49088 | 0.4725 | 0.8353 | | 0.2267 | 3.0 | 73632 | 0.5887 | 0.8368 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3