gayanin commited on
Commit
1bf8424
·
1 Parent(s): fdac3d0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: t5-small-mlm-pubmed-45
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # t5-small-mlm-pubmed-45
14
+
15
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.6395
18
+ - Rouge2 Precision: 0.3383
19
+ - Rouge2 Recall: 0.2424
20
+ - Rouge2 Fmeasure: 0.2753
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 2.519 | 0.75 | 500 | 1.9659 | 0.3178 | 0.1888 | 0.2299 |
53
+ | 2.169 | 1.51 | 1000 | 1.8450 | 0.3256 | 0.2138 | 0.25 |
54
+ | 2.0796 | 2.26 | 1500 | 1.7900 | 0.3368 | 0.2265 | 0.2636 |
55
+ | 1.9978 | 3.02 | 2000 | 1.7553 | 0.3427 | 0.234 | 0.2709 |
56
+ | 1.9686 | 3.77 | 2500 | 1.7172 | 0.3356 | 0.2347 | 0.2692 |
57
+ | 1.9142 | 4.52 | 3000 | 1.6986 | 0.3358 | 0.238 | 0.2715 |
58
+ | 1.921 | 5.28 | 3500 | 1.6770 | 0.3349 | 0.2379 | 0.2709 |
59
+ | 1.8848 | 6.03 | 4000 | 1.6683 | 0.3346 | 0.2379 | 0.2708 |
60
+ | 1.8674 | 6.79 | 4500 | 1.6606 | 0.3388 | 0.2419 | 0.2752 |
61
+ | 1.8606 | 7.54 | 5000 | 1.6514 | 0.3379 | 0.2409 | 0.274 |
62
+ | 1.8515 | 8.3 | 5500 | 1.6438 | 0.3356 | 0.2407 | 0.2731 |
63
+ | 1.8403 | 9.05 | 6000 | 1.6401 | 0.3367 | 0.2421 | 0.2744 |
64
+ | 1.8411 | 9.8 | 6500 | 1.6395 | 0.3383 | 0.2424 | 0.2753 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.12.5
70
+ - Pytorch 1.10.0+cu111
71
+ - Datasets 1.15.1
72
+ - Tokenizers 0.10.3