File size: 1,972 Bytes
831f878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-pubmed
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-pubmed

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9754
- Rouge1: 36.7213
- Rouge2: 18.6627
- Rougel: 32.3932
- Rougelsum: 32.6819
- Gen Len: 16.9326

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 100  | 2.1324          | 29.4167 | 13.5345 | 25.6588 | 25.8099   | 17.8596 |
| No log        | 2.0   | 200  | 2.0319          | 34.0176 | 16.285  | 29.3676 | 29.5428   | 17.1966 |
| No log        | 3.0   | 300  | 1.9969          | 35.0555 | 17.1712 | 30.7931 | 30.9756   | 16.8989 |
| No log        | 4.0   | 400  | 1.9802          | 35.997  | 17.979  | 31.8043 | 32.1127   | 16.8539 |
| 2.1897        | 5.0   | 500  | 1.9754          | 36.7213 | 18.6627 | 32.3932 | 32.6819   | 16.9326 |


### Framework versions

- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3