The repository is adapted based on: https://huggingface.co./chenxran/bart-smiles/tree/main ```python from transformers import AutoTokenizer, AutoModel, SequenceFeatureExtractor import torch from transformers import AutoTokenizer, AutoModel smiles = "CCC(=O)" tokenizer = AutoTokenizer.from_pretrained("./BARTSmiles/", add_prefix_space=True) inputs = tokenizer(smiles, return_tensors="pt", return_token_type_ids=False, add_special_tokens=True) model = AutoModel.from_pretrained('./BARTSmiles') model.eval() # Use a pipeline as a high-level helper from transformers import pipeline extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer) result = extractor(smiles, return_tensors=True, tokenize_kwargs={'return_token_type_ids':False}) ``` ## Citation @article{chilingaryan2022bartsmiles, title={Bartsmiles: Generative masked language models for molecular representations}, author={Chilingaryan, Gayane and Tamoyan, Hovhannes and Tevosyan, Ani and Babayan, Nelly and Khondkaryan, Lusine and Hambardzumyan, Karen and Navoyan, Zaven and Khachatrian, Hrant and Aghajanyan, Armen}, journal={arXiv preprint arXiv:2211.16349}, year={2022} }