gavinqiangli commited on
Commit
c12209f
1 Parent(s): b4cc592

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: BAAI/bge-large-en
12
+ widget:
13
+ - source_sentence: A construction worker is standing on a crane placing a large arm
14
+ on top of a stature in progress.
15
+ sentences:
16
+ - A man is playing with his camera.
17
+ - A person standing
18
+ - Nobody is standing
19
+ - source_sentence: A boy in red slides down an inflatable ride.
20
+ sentences:
21
+ - a baby smiling
22
+ - A boy is playing on an inflatable ride.
23
+ - A boy pierces a knife through an inflatable ride.
24
+ - source_sentence: A man in a black shirt is playing a guitar.
25
+ sentences:
26
+ - A group of women are selling their wares
27
+ - The man is wearing black.
28
+ - The man is wearing a blue shirt.
29
+ - source_sentence: A man with a large power drill standing next to his daughter with
30
+ a vacuum cleaner hose.
31
+ sentences:
32
+ - A man holding a drill stands next to a girl holding a vacuum hose.
33
+ - Kids ride an amusement ride.
34
+ - The man and girl are painting the walls.
35
+ - source_sentence: A middle-aged man works under the engine of a train on rail tracks.
36
+ sentences:
37
+ - A guy is working on a train.
38
+ - Two young asian men are squatting.
39
+ - A guy is driving to work.
40
+ datasets:
41
+ - sentence-transformers/all-nli
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy
46
+ model-index:
47
+ - name: SentenceTransformer based on BAAI/bge-large-en
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: all nli test
54
+ type: all-nli-test
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.8332576789226812
58
+ name: Cosine Accuracy
59
+ ---
60
+
61
+ # SentenceTransformer based on BAAI/bge-large-en
62
+
63
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ - **Model Type:** Sentence Transformer
69
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
70
+ - **Maximum Sequence Length:** 512 tokens
71
+ - **Output Dimensionality:** 1024 dimensions
72
+ - **Similarity Function:** Cosine Similarity
73
+ - **Training Dataset:**
74
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
75
+ - **Language:** en
76
+ <!-- - **License:** Unknown -->
77
+
78
+ ### Model Sources
79
+
80
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
81
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
82
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
83
+
84
+ ### Full Model Architecture
85
+
86
+ ```
87
+ SentenceTransformer(
88
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
89
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
90
+ (2): Normalize()
91
+ )
92
+ ```
93
+
94
+ ## Usage
95
+
96
+ ### Direct Usage (Sentence Transformers)
97
+
98
+ First install the Sentence Transformers library:
99
+
100
+ ```bash
101
+ pip install -U sentence-transformers
102
+ ```
103
+
104
+ Then you can load this model and run inference.
105
+ ```python
106
+ from sentence_transformers import SentenceTransformer
107
+
108
+ # Download from the 🤗 Hub
109
+ model = SentenceTransformer("gavinqiangli/bge-large-mpnet-base-all-nli-triplet-final")
110
+ # Run inference
111
+ sentences = [
112
+ 'A middle-aged man works under the engine of a train on rail tracks.',
113
+ 'A guy is working on a train.',
114
+ 'A guy is driving to work.',
115
+ ]
116
+ embeddings = model.encode(sentences)
117
+ print(embeddings.shape)
118
+ # [3, 1024]
119
+
120
+ # Get the similarity scores for the embeddings
121
+ similarities = model.similarity(embeddings, embeddings)
122
+ print(similarities.shape)
123
+ # [3, 3]
124
+ ```
125
+
126
+ <!--
127
+ ### Direct Usage (Transformers)
128
+
129
+ <details><summary>Click to see the direct usage in Transformers</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Downstream Usage (Sentence Transformers)
136
+
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ ## Evaluation
151
+
152
+ ### Metrics
153
+
154
+ #### Triplet
155
+
156
+ * Dataset: `all-nli-test`
157
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | **cosine_accuracy** | **0.8333** |
162
+
163
+ <!--
164
+ ## Bias, Risks and Limitations
165
+
166
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
167
+ -->
168
+
169
+ <!--
170
+ ### Recommendations
171
+
172
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
173
+ -->
174
+
175
+ ## Training Details
176
+
177
+ ### Training Dataset
178
+
179
+ #### all-nli
180
+
181
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
182
+ * Size: 557,850 training samples
183
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | anchor | positive | negative |
186
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
187
+ | type | string | string | string |
188
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
189
+ * Samples:
190
+ | anchor | positive | negative |
191
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
192
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
193
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
194
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim"
200
+ }
201
+ ```
202
+
203
+ ### Evaluation Dataset
204
+
205
+ #### all-nli
206
+
207
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
208
+ * Size: 6,584 evaluation samples
209
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
210
+ * Approximate statistics based on the first 1000 samples:
211
+ | | anchor | positive | negative |
212
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
213
+ | type | string | string | string |
214
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
215
+ * Samples:
216
+ | anchor | positive | negative |
217
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
218
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
219
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
220
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
221
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
222
+ ```json
223
+ {
224
+ "scale": 20.0,
225
+ "similarity_fct": "cos_sim"
226
+ }
227
+ ```
228
+
229
+ ### Training Hyperparameters
230
+ #### Non-Default Hyperparameters
231
+
232
+ - `eval_strategy`: steps
233
+ - `per_device_train_batch_size`: 16
234
+ - `per_device_eval_batch_size`: 16
235
+ - `num_train_epochs`: 1
236
+ - `warmup_ratio`: 0.1
237
+ - `fp16`: True
238
+ - `batch_sampler`: no_duplicates
239
+
240
+ #### All Hyperparameters
241
+ <details><summary>Click to expand</summary>
242
+
243
+ - `overwrite_output_dir`: False
244
+ - `do_predict`: False
245
+ - `eval_strategy`: steps
246
+ - `prediction_loss_only`: True
247
+ - `per_device_train_batch_size`: 16
248
+ - `per_device_eval_batch_size`: 16
249
+ - `per_gpu_train_batch_size`: None
250
+ - `per_gpu_eval_batch_size`: None
251
+ - `gradient_accumulation_steps`: 1
252
+ - `eval_accumulation_steps`: None
253
+ - `torch_empty_cache_steps`: None
254
+ - `learning_rate`: 5e-05
255
+ - `weight_decay`: 0.0
256
+ - `adam_beta1`: 0.9
257
+ - `adam_beta2`: 0.999
258
+ - `adam_epsilon`: 1e-08
259
+ - `max_grad_norm`: 1.0
260
+ - `num_train_epochs`: 1
261
+ - `max_steps`: -1
262
+ - `lr_scheduler_type`: linear
263
+ - `lr_scheduler_kwargs`: {}
264
+ - `warmup_ratio`: 0.1
265
+ - `warmup_steps`: 0
266
+ - `log_level`: passive
267
+ - `log_level_replica`: warning
268
+ - `log_on_each_node`: True
269
+ - `logging_nan_inf_filter`: True
270
+ - `save_safetensors`: True
271
+ - `save_on_each_node`: False
272
+ - `save_only_model`: False
273
+ - `restore_callback_states_from_checkpoint`: False
274
+ - `no_cuda`: False
275
+ - `use_cpu`: False
276
+ - `use_mps_device`: False
277
+ - `seed`: 42
278
+ - `data_seed`: None
279
+ - `jit_mode_eval`: False
280
+ - `use_ipex`: False
281
+ - `bf16`: False
282
+ - `fp16`: True
283
+ - `fp16_opt_level`: O1
284
+ - `half_precision_backend`: auto
285
+ - `bf16_full_eval`: False
286
+ - `fp16_full_eval`: False
287
+ - `tf32`: None
288
+ - `local_rank`: 0
289
+ - `ddp_backend`: None
290
+ - `tpu_num_cores`: None
291
+ - `tpu_metrics_debug`: False
292
+ - `debug`: []
293
+ - `dataloader_drop_last`: False
294
+ - `dataloader_num_workers`: 0
295
+ - `dataloader_prefetch_factor`: None
296
+ - `past_index`: -1
297
+ - `disable_tqdm`: False
298
+ - `remove_unused_columns`: True
299
+ - `label_names`: None
300
+ - `load_best_model_at_end`: False
301
+ - `ignore_data_skip`: False
302
+ - `fsdp`: []
303
+ - `fsdp_min_num_params`: 0
304
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
305
+ - `fsdp_transformer_layer_cls_to_wrap`: None
306
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
307
+ - `deepspeed`: None
308
+ - `label_smoothing_factor`: 0.0
309
+ - `optim`: adamw_torch
310
+ - `optim_args`: None
311
+ - `adafactor`: False
312
+ - `group_by_length`: False
313
+ - `length_column_name`: length
314
+ - `ddp_find_unused_parameters`: None
315
+ - `ddp_bucket_cap_mb`: None
316
+ - `ddp_broadcast_buffers`: False
317
+ - `dataloader_pin_memory`: True
318
+ - `dataloader_persistent_workers`: False
319
+ - `skip_memory_metrics`: True
320
+ - `use_legacy_prediction_loop`: False
321
+ - `push_to_hub`: False
322
+ - `resume_from_checkpoint`: None
323
+ - `hub_model_id`: None
324
+ - `hub_strategy`: every_save
325
+ - `hub_private_repo`: False
326
+ - `hub_always_push`: False
327
+ - `gradient_checkpointing`: False
328
+ - `gradient_checkpointing_kwargs`: None
329
+ - `include_inputs_for_metrics`: False
330
+ - `include_for_metrics`: []
331
+ - `eval_do_concat_batches`: True
332
+ - `fp16_backend`: auto
333
+ - `push_to_hub_model_id`: None
334
+ - `push_to_hub_organization`: None
335
+ - `mp_parameters`:
336
+ - `auto_find_batch_size`: False
337
+ - `full_determinism`: False
338
+ - `torchdynamo`: None
339
+ - `ray_scope`: last
340
+ - `ddp_timeout`: 1800
341
+ - `torch_compile`: False
342
+ - `torch_compile_backend`: None
343
+ - `torch_compile_mode`: None
344
+ - `dispatch_batches`: None
345
+ - `split_batches`: None
346
+ - `include_tokens_per_second`: False
347
+ - `include_num_input_tokens_seen`: False
348
+ - `neftune_noise_alpha`: None
349
+ - `optim_target_modules`: None
350
+ - `batch_eval_metrics`: False
351
+ - `eval_on_start`: False
352
+ - `use_liger_kernel`: False
353
+ - `eval_use_gather_object`: False
354
+ - `average_tokens_across_devices`: False
355
+ - `prompts`: None
356
+ - `batch_sampler`: no_duplicates
357
+ - `multi_dataset_batch_sampler`: proportional
358
+
359
+ </details>
360
+
361
+ ### Training Logs
362
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-test_cosine_accuracy |
363
+ |:------:|:----:|:-------------:|:---------------:|:----------------------------:|
364
+ | 0.5333 | 1000 | 0.7168 | 0.6448 | - |
365
+ | 1.0 | 1875 | - | - | 0.8333 |
366
+
367
+
368
+ ### Framework Versions
369
+ - Python: 3.10.12
370
+ - Sentence Transformers: 3.3.0
371
+ - Transformers: 4.46.2
372
+ - PyTorch: 2.5.0+cu121
373
+ - Accelerate: 1.1.1
374
+ - Datasets: 3.1.0
375
+ - Tokenizers: 0.20.3
376
+
377
+ ## Citation
378
+
379
+ ### BibTeX
380
+
381
+ #### Sentence Transformers
382
+ ```bibtex
383
+ @inproceedings{reimers-2019-sentence-bert,
384
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
385
+ author = "Reimers, Nils and Gurevych, Iryna",
386
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
387
+ month = "11",
388
+ year = "2019",
389
+ publisher = "Association for Computational Linguistics",
390
+ url = "https://arxiv.org/abs/1908.10084",
391
+ }
392
+ ```
393
+
394
+ #### MultipleNegativesRankingLoss
395
+ ```bibtex
396
+ @misc{henderson2017efficient,
397
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
398
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
399
+ year={2017},
400
+ eprint={1705.00652},
401
+ archivePrefix={arXiv},
402
+ primaryClass={cs.CL}
403
+ }
404
+ ```
405
+
406
+ <!--
407
+ ## Glossary
408
+
409
+ *Clearly define terms in order to be accessible across audiences.*
410
+ -->
411
+
412
+ <!--
413
+ ## Model Card Authors
414
+
415
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
416
+ -->
417
+
418
+ <!--
419
+ ## Model Card Contact
420
+
421
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
422
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.46.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f0e2c80e4b3cce5f02da678576318cd8f30895a8269113d6be92c83d5f27795
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff