gavinqiangli commited on
Commit
755cbcf
1 Parent(s): 8d8f3a5

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: BAAI/bge-large-en
12
+ widget:
13
+ - source_sentence: A man is jumping unto his filthy bed.
14
+ sentences:
15
+ - A young male is looking at a newspaper while 2 females walks past him.
16
+ - The bed is dirty.
17
+ - The man is on the moon.
18
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
19
+ beach area.
20
+ sentences:
21
+ - A man is ouside near the beach.
22
+ - Three policemen patrol the streets on bikes
23
+ - A man is sitting on his couch.
24
+ - source_sentence: The man is wearing a blue shirt.
25
+ sentences:
26
+ - Near the trashcan the man stood and smoked
27
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
28
+ with water in the background.
29
+ - A man in a black shirt is playing a guitar.
30
+ - source_sentence: The girls are outdoors.
31
+ sentences:
32
+ - Two girls riding on an amusement part ride.
33
+ - a guy laughs while doing laundry
34
+ - Three girls are standing together in a room, one is listening, one is writing
35
+ on a wall and the third is talking to them.
36
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
37
+ sits on the sidewalk smiling.
38
+ sentences:
39
+ - A worker is looking out of a manhole.
40
+ - A man is giving a presentation.
41
+ - The workers are both inside the manhole.
42
+ datasets:
43
+ - sentence-transformers/all-nli
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - cosine_accuracy
48
+ model-index:
49
+ - name: SentenceTransformer based on BAAI/bge-large-en
50
+ results:
51
+ - task:
52
+ type: triplet
53
+ name: Triplet
54
+ dataset:
55
+ name: all nli test
56
+ type: all-nli-test
57
+ metrics:
58
+ - type: cosine_accuracy
59
+ value: 0.8775911635648358
60
+ name: Cosine Accuracy
61
+ ---
62
+
63
+ # SentenceTransformer based on BAAI/bge-large-en
64
+
65
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** Sentence Transformer
71
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
72
+ - **Maximum Sequence Length:** 512 tokens
73
+ - **Output Dimensionality:** 1024 dimensions
74
+ - **Similarity Function:** Cosine Similarity
75
+ - **Training Dataset:**
76
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
77
+ - **Language:** en
78
+ <!-- - **License:** Unknown -->
79
+
80
+ ### Model Sources
81
+
82
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
83
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
84
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
85
+
86
+ ### Full Model Architecture
87
+
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
91
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
92
+ (2): Normalize()
93
+ )
94
+ ```
95
+
96
+ ## Usage
97
+
98
+ ### Direct Usage (Sentence Transformers)
99
+
100
+ First install the Sentence Transformers library:
101
+
102
+ ```bash
103
+ pip install -U sentence-transformers
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+ ```python
108
+ from sentence_transformers import SentenceTransformer
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SentenceTransformer("gavinqiangli/bge-large-mpnet-base-all-nli-triplet-final-50000")
112
+ # Run inference
113
+ sentences = [
114
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
115
+ 'A worker is looking out of a manhole.',
116
+ 'The workers are both inside the manhole.',
117
+ ]
118
+ embeddings = model.encode(sentences)
119
+ print(embeddings.shape)
120
+ # [3, 1024]
121
+
122
+ # Get the similarity scores for the embeddings
123
+ similarities = model.similarity(embeddings, embeddings)
124
+ print(similarities.shape)
125
+ # [3, 3]
126
+ ```
127
+
128
+ <!--
129
+ ### Direct Usage (Transformers)
130
+
131
+ <details><summary>Click to see the direct usage in Transformers</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Downstream Usage (Sentence Transformers)
138
+
139
+ You can finetune this model on your own dataset.
140
+
141
+ <details><summary>Click to expand</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Out-of-Scope Use
148
+
149
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
150
+ -->
151
+
152
+ ## Evaluation
153
+
154
+ ### Metrics
155
+
156
+ #### Triplet
157
+
158
+ * Dataset: `all-nli-test`
159
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
160
+
161
+ | Metric | Value |
162
+ |:--------------------|:-----------|
163
+ | **cosine_accuracy** | **0.8776** |
164
+
165
+ <!--
166
+ ## Bias, Risks and Limitations
167
+
168
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
169
+ -->
170
+
171
+ <!--
172
+ ### Recommendations
173
+
174
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
175
+ -->
176
+
177
+ ## Training Details
178
+
179
+ ### Training Dataset
180
+
181
+ #### all-nli
182
+
183
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
184
+ * Size: 557,850 training samples
185
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
186
+ * Approximate statistics based on the first 1000 samples:
187
+ | | anchor | positive | negative |
188
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
189
+ | type | string | string | string |
190
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
191
+ * Samples:
192
+ | anchor | positive | negative |
193
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
194
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
195
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
196
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
197
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
198
+ ```json
199
+ {
200
+ "scale": 20.0,
201
+ "similarity_fct": "cos_sim"
202
+ }
203
+ ```
204
+
205
+ ### Evaluation Dataset
206
+
207
+ #### all-nli
208
+
209
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
210
+ * Size: 6,584 evaluation samples
211
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
212
+ * Approximate statistics based on the first 1000 samples:
213
+ | | anchor | positive | negative |
214
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
215
+ | type | string | string | string |
216
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
217
+ * Samples:
218
+ | anchor | positive | negative |
219
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
220
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
221
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
222
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
223
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
224
+ ```json
225
+ {
226
+ "scale": 20.0,
227
+ "similarity_fct": "cos_sim"
228
+ }
229
+ ```
230
+
231
+ ### Training Hyperparameters
232
+ #### Non-Default Hyperparameters
233
+
234
+ - `eval_strategy`: steps
235
+ - `per_device_train_batch_size`: 16
236
+ - `per_device_eval_batch_size`: 16
237
+ - `num_train_epochs`: 1
238
+ - `warmup_ratio`: 0.1
239
+ - `fp16`: True
240
+ - `batch_sampler`: no_duplicates
241
+
242
+ #### All Hyperparameters
243
+ <details><summary>Click to expand</summary>
244
+
245
+ - `overwrite_output_dir`: False
246
+ - `do_predict`: False
247
+ - `eval_strategy`: steps
248
+ - `prediction_loss_only`: True
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `per_gpu_train_batch_size`: None
252
+ - `per_gpu_eval_batch_size`: None
253
+ - `gradient_accumulation_steps`: 1
254
+ - `eval_accumulation_steps`: None
255
+ - `torch_empty_cache_steps`: None
256
+ - `learning_rate`: 5e-05
257
+ - `weight_decay`: 0.0
258
+ - `adam_beta1`: 0.9
259
+ - `adam_beta2`: 0.999
260
+ - `adam_epsilon`: 1e-08
261
+ - `max_grad_norm`: 1.0
262
+ - `num_train_epochs`: 1
263
+ - `max_steps`: -1
264
+ - `lr_scheduler_type`: linear
265
+ - `lr_scheduler_kwargs`: {}
266
+ - `warmup_ratio`: 0.1
267
+ - `warmup_steps`: 0
268
+ - `log_level`: passive
269
+ - `log_level_replica`: warning
270
+ - `log_on_each_node`: True
271
+ - `logging_nan_inf_filter`: True
272
+ - `save_safetensors`: True
273
+ - `save_on_each_node`: False
274
+ - `save_only_model`: False
275
+ - `restore_callback_states_from_checkpoint`: False
276
+ - `no_cuda`: False
277
+ - `use_cpu`: False
278
+ - `use_mps_device`: False
279
+ - `seed`: 42
280
+ - `data_seed`: None
281
+ - `jit_mode_eval`: False
282
+ - `use_ipex`: False
283
+ - `bf16`: False
284
+ - `fp16`: True
285
+ - `fp16_opt_level`: O1
286
+ - `half_precision_backend`: auto
287
+ - `bf16_full_eval`: False
288
+ - `fp16_full_eval`: False
289
+ - `tf32`: None
290
+ - `local_rank`: 0
291
+ - `ddp_backend`: None
292
+ - `tpu_num_cores`: None
293
+ - `tpu_metrics_debug`: False
294
+ - `debug`: []
295
+ - `dataloader_drop_last`: False
296
+ - `dataloader_num_workers`: 0
297
+ - `dataloader_prefetch_factor`: None
298
+ - `past_index`: -1
299
+ - `disable_tqdm`: False
300
+ - `remove_unused_columns`: True
301
+ - `label_names`: None
302
+ - `load_best_model_at_end`: False
303
+ - `ignore_data_skip`: False
304
+ - `fsdp`: []
305
+ - `fsdp_min_num_params`: 0
306
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
307
+ - `fsdp_transformer_layer_cls_to_wrap`: None
308
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
309
+ - `deepspeed`: None
310
+ - `label_smoothing_factor`: 0.0
311
+ - `optim`: adamw_torch
312
+ - `optim_args`: None
313
+ - `adafactor`: False
314
+ - `group_by_length`: False
315
+ - `length_column_name`: length
316
+ - `ddp_find_unused_parameters`: None
317
+ - `ddp_bucket_cap_mb`: None
318
+ - `ddp_broadcast_buffers`: False
319
+ - `dataloader_pin_memory`: True
320
+ - `dataloader_persistent_workers`: False
321
+ - `skip_memory_metrics`: True
322
+ - `use_legacy_prediction_loop`: False
323
+ - `push_to_hub`: False
324
+ - `resume_from_checkpoint`: None
325
+ - `hub_model_id`: None
326
+ - `hub_strategy`: every_save
327
+ - `hub_private_repo`: False
328
+ - `hub_always_push`: False
329
+ - `gradient_checkpointing`: False
330
+ - `gradient_checkpointing_kwargs`: None
331
+ - `include_inputs_for_metrics`: False
332
+ - `include_for_metrics`: []
333
+ - `eval_do_concat_batches`: True
334
+ - `fp16_backend`: auto
335
+ - `push_to_hub_model_id`: None
336
+ - `push_to_hub_organization`: None
337
+ - `mp_parameters`:
338
+ - `auto_find_batch_size`: False
339
+ - `full_determinism`: False
340
+ - `torchdynamo`: None
341
+ - `ray_scope`: last
342
+ - `ddp_timeout`: 1800
343
+ - `torch_compile`: False
344
+ - `torch_compile_backend`: None
345
+ - `torch_compile_mode`: None
346
+ - `dispatch_batches`: None
347
+ - `split_batches`: None
348
+ - `include_tokens_per_second`: False
349
+ - `include_num_input_tokens_seen`: False
350
+ - `neftune_noise_alpha`: None
351
+ - `optim_target_modules`: None
352
+ - `batch_eval_metrics`: False
353
+ - `eval_on_start`: False
354
+ - `use_liger_kernel`: False
355
+ - `eval_use_gather_object`: False
356
+ - `average_tokens_across_devices`: False
357
+ - `prompts`: None
358
+ - `batch_sampler`: no_duplicates
359
+ - `multi_dataset_batch_sampler`: proportional
360
+
361
+ </details>
362
+
363
+ ### Training Logs
364
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-test_cosine_accuracy |
365
+ |:-----:|:----:|:-------------:|:---------------:|:----------------------------:|
366
+ | 0.032 | 100 | 0.8847 | 0.3740 | - |
367
+ | 0.064 | 200 | 0.4996 | 0.5560 | - |
368
+ | 0.096 | 300 | 0.8509 | 0.6081 | - |
369
+ | 0.128 | 400 | 0.5817 | 0.8719 | - |
370
+ | 0.16 | 500 | 0.6331 | 0.7697 | - |
371
+ | 0.192 | 600 | 0.7155 | 0.7819 | - |
372
+ | 0.224 | 700 | 0.6036 | 0.8813 | - |
373
+ | 0.256 | 800 | 1.1495 | 0.8913 | - |
374
+ | 0.288 | 900 | 0.7497 | 0.7633 | - |
375
+ | 0.32 | 1000 | 0.7289 | 0.7136 | - |
376
+ | 0.352 | 1100 | 0.6371 | 1.0099 | - |
377
+ | 0.384 | 1200 | 0.6965 | 0.7570 | - |
378
+ | 0.416 | 1300 | 0.5665 | 0.7934 | - |
379
+ | 0.448 | 1400 | 0.5451 | 0.7598 | - |
380
+ | 0.48 | 1500 | 0.6248 | 0.6023 | - |
381
+ | 0.512 | 1600 | 0.5249 | 0.7478 | - |
382
+ | 0.544 | 1700 | 0.6971 | 0.7140 | - |
383
+ | 0.576 | 1800 | 0.6436 | 0.7130 | - |
384
+ | 0.608 | 1900 | 0.6284 | 0.6501 | - |
385
+ | 0.64 | 2000 | 0.4974 | 0.6378 | - |
386
+ | 0.672 | 2100 | 0.4965 | 0.6589 | - |
387
+ | 0.704 | 2200 | 0.5016 | 0.6741 | - |
388
+ | 0.736 | 2300 | 0.6417 | 0.5690 | - |
389
+ | 0.768 | 2400 | 0.5415 | 0.5778 | - |
390
+ | 0.8 | 2500 | 0.5331 | 0.5735 | - |
391
+ | 0.832 | 2600 | 0.3063 | 0.6320 | - |
392
+ | 0.864 | 2700 | 0.1068 | 0.6891 | - |
393
+ | 0.896 | 2800 | 0.0182 | 0.7375 | - |
394
+ | 0.928 | 2900 | 0.0263 | 0.7724 | - |
395
+ | 0.96 | 3000 | 0.0233 | 0.7752 | - |
396
+ | 0.992 | 3100 | 0.1092 | 0.7753 | - |
397
+ | 1.0 | 3125 | - | - | 0.8776 |
398
+
399
+
400
+ ### Framework Versions
401
+ - Python: 3.10.12
402
+ - Sentence Transformers: 3.3.0
403
+ - Transformers: 4.46.2
404
+ - PyTorch: 2.5.0+cu121
405
+ - Accelerate: 1.1.1
406
+ - Datasets: 3.1.0
407
+ - Tokenizers: 0.20.3
408
+
409
+ ## Citation
410
+
411
+ ### BibTeX
412
+
413
+ #### Sentence Transformers
414
+ ```bibtex
415
+ @inproceedings{reimers-2019-sentence-bert,
416
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
417
+ author = "Reimers, Nils and Gurevych, Iryna",
418
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
419
+ month = "11",
420
+ year = "2019",
421
+ publisher = "Association for Computational Linguistics",
422
+ url = "https://arxiv.org/abs/1908.10084",
423
+ }
424
+ ```
425
+
426
+ #### MultipleNegativesRankingLoss
427
+ ```bibtex
428
+ @misc{henderson2017efficient,
429
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
430
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
431
+ year={2017},
432
+ eprint={1705.00652},
433
+ archivePrefix={arXiv},
434
+ primaryClass={cs.CL}
435
+ }
436
+ ```
437
+
438
+ <!--
439
+ ## Glossary
440
+
441
+ *Clearly define terms in order to be accessible across audiences.*
442
+ -->
443
+
444
+ <!--
445
+ ## Model Card Authors
446
+
447
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Contact
452
+
453
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
454
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.46.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3d7dc73524b12478b03615e347a60110d852daf4d24189a4a0a63881606069d
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff