formula-f312b-flux-lokr-lion-1e-5-bs2-v01

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

No validation prompt was used during training.

None

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 768x768
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A dynamic scene featuring a classic Formula 1 race car from the 1970s in action on a race track. The car is a bright red Ferrari 312B with the number 3 prominently displayed on the front and sides, and various sponsor logos including Shell and Firestone, racing down a mountain road at night. The car features wide rear tires, a large rear wing, and a distinctive aerodynamic design. The driver, wearing a red and white helmet and a racing suit, is visible in the open cockpit. The scene captures the car in mid-drift, with motion lines emphasizing its speed and movement. The background shows a winding road lined with trees and rocky cliffs. The overall atmosphere is intense and thrilling, capturing the excitement of night racing in a detailed manner
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 26
  • Training steps: 6480
  • Learning rate: 1e-05
    • Learning rate schedule: polynomial
    • Warmup steps: 100
  • Max grad norm: 0.01
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
  • Optimizer: optimi-lionweight_decay=1e-3
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

LyCORIS Config:

{
    "bypass_mode": true,
    "algo": "lokr",
    "multiplier": 1.0,
    "full_matrix": true,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 4,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "FeedForward": {
                "factor": 4
            },
            "Attention": {
                "factor": 2
            }
        }
    }
}

Datasets

FORMULA-F312B-ORIGINAL-FLUX-V01-512

  • Repeats: 1
  • Total number of images: 48
  • Total number of aspect buckets: 8
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: closest
  • Used for regularisation data: No

FORMULA-F312B-ORIGINAL-FLUX-V01-768

  • Repeats: 1
  • Total number of images: 48
  • Total number of aspect buckets: 3
  • Resolution: 0.589824 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: closest
  • Used for regularisation data: No

FORMULA-F312B-FLUX-V01-512

  • Repeats: 1
  • Total number of images: 60
  • Total number of aspect buckets: 9
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: closest
  • Used for regularisation data: No

FORMULA-F312B-FLUX-V01-768

  • Repeats: 1
  • Total number of images: 60
  • Total number of aspect buckets: 12
  • Resolution: 0.589824 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: closest
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'gattaplayer/formula-f312b-flux-lokr-lion-1e-5-bs2-v01'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "An astronaut is riding a horse through the jungles of Thailand."


## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=768,
    height=768,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
62
Inference API
Examples

Model tree for gattaplayer/formula-f312b-flux-lokr-lion-1e-5-bs2-v01

Adapter
(14183)
this model