gastonduault
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -11,10 +11,12 @@ tags:
|
|
11 |
- music
|
12 |
- classification
|
13 |
- Wav2Vec2
|
|
|
14 |
---
|
15 |
|
16 |
# Music Genre Classification Model 🎶
|
17 |
This model classifies music genres based on audio signals. It was fine-tuned on the `music_genres_small` dataset using the Wav2Vec2 architecture.
|
|
|
18 |
|
19 |
## Metrics
|
20 |
- **Validation Accuracy**: 75%
|
@@ -38,4 +40,4 @@ audio_input = feature_extractor(audio_array, sampling_rate=16000, return_tensors
|
|
38 |
with torch.no_grad():
|
39 |
logits = model(audio_input["input_values"])
|
40 |
predicted_class = torch.argmax(logits.logits, dim=-1)
|
41 |
-
print(predicted_class)
|
|
|
11 |
- music
|
12 |
- classification
|
13 |
- Wav2Vec2
|
14 |
+
pipeline_tag: audio-classification
|
15 |
---
|
16 |
|
17 |
# Music Genre Classification Model 🎶
|
18 |
This model classifies music genres based on audio signals. It was fine-tuned on the `music_genres_small` dataset using the Wav2Vec2 architecture.
|
19 |
+
You can find a GitHub repository with an interface hosted by a Flask API to test the model: **[music-classifier repository](https://github.com/gastonduault/Music-Classifier)**
|
20 |
|
21 |
## Metrics
|
22 |
- **Validation Accuracy**: 75%
|
|
|
40 |
with torch.no_grad():
|
41 |
logits = model(audio_input["input_values"])
|
42 |
predicted_class = torch.argmax(logits.logits, dim=-1)
|
43 |
+
print(predicted_class)
|