garrettbaber
commited on
Commit
·
1c4db45
1
Parent(s):
548f230
Update README.md
Browse files
README.md
CHANGED
@@ -1,16 +1,22 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
- autotrain
|
4 |
- text-regression
|
|
|
|
|
|
|
5 |
language:
|
6 |
- unk
|
7 |
widget:
|
8 |
-
- text:
|
9 |
datasets:
|
10 |
-
-
|
11 |
co2_eq_emissions:
|
12 |
emissions: 0.030118000944741423
|
13 |
---
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Model Trained Using AutoTrain
|
16 |
|
@@ -32,7 +38,7 @@ co2_eq_emissions:
|
|
32 |
You can use cURL to access this model:
|
33 |
|
34 |
```
|
35 |
-
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I
|
36 |
```
|
37 |
|
38 |
Or Python API:
|
@@ -40,11 +46,11 @@ Or Python API:
|
|
40 |
```
|
41 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
42 |
|
43 |
-
model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/
|
44 |
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("garrettbaber/
|
46 |
|
47 |
-
inputs = tokenizer("I
|
48 |
|
49 |
outputs = model(**inputs)
|
50 |
```
|
|
|
1 |
---
|
2 |
tags:
|
|
|
3 |
- text-regression
|
4 |
+
- anger
|
5 |
+
- emotion
|
6 |
+
- emotion intensity
|
7 |
language:
|
8 |
- unk
|
9 |
widget:
|
10 |
+
- text: I am furious
|
11 |
datasets:
|
12 |
+
- SemEval-2018-Task-1-Text-Regression-Task
|
13 |
co2_eq_emissions:
|
14 |
emissions: 0.030118000944741423
|
15 |
---
|
16 |
+
# twitter-roberta-base-anger-intensity
|
17 |
+
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression).
|
18 |
+
|
19 |
+
Warning: Hosted inference API produces inaccurate values
|
20 |
|
21 |
# Model Trained Using AutoTrain
|
22 |
|
|
|
38 |
You can use cURL to access this model:
|
39 |
|
40 |
```
|
41 |
+
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I am furious"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-anger-intensity
|
42 |
```
|
43 |
|
44 |
Or Python API:
|
|
|
46 |
```
|
47 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
48 |
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
|
50 |
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
|
52 |
|
53 |
+
inputs = tokenizer("I am furious", return_tensors="pt")
|
54 |
|
55 |
outputs = model(**inputs)
|
56 |
```
|