--- license: apache-2.0 datasets: - gair-prox/open-web-math-pro language: - en base_model: - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T --- # TinyLlama-1.1B-ProXMath

[ArXiv](https://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co./datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **TinyLlama-1.1B-ProXMath** is a math-adapted TinyLlama-1.1B model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co./datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **15**B tokens. ## Evaluations ProX models are evaluated on 9 common math reasoning benchmarks. | Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average | |-------------------------|:--------:|:-------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:| | TinyLlama-1.1B | 18.0 | 2.8 | 14.6 | 20.2 | 3.2 | 16.3 | 21.9 | 10.9 | 12.5 | 13.4 | | TinyLlama-1.1B-ProXMath | **41.9** | **9.0** | **15.6** | **56.9** | **5.6** | **26.8** | **31.2** | **23.8** | **22.2** | **25.7** | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```