--- license: apache-2.0 datasets: - gair-prox/RedPajama-pro language: - en tags: - llama --- # RedPJ-ProX-1.7B

[ArXiv](http://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co./gair-prox/RedPJ-ProX-1.7B) | [Data](https://huggingface.co./datasets/gair-prox/RedPajama-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **RedPJ-ProX-1.7B** is a small language model. It was and trained on the [RedPajama-V2-pro](https://huggingface.co./datasets/gair-prox/RedPajama-pro) for 50B tokens. ## Evaluations ProX models are evaluated over 10 language model benchmarks in zero-shot setting. | | ArC-c | ARC-e | CSQA | HellaS | MMLU | OBQA | PiQA | SIQA | WinoG | SciQ | AVG | |-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|------| | raw | 26.9 | 51.4 | 32.4 | 47.3 | 29.3 | 32.2 | 69.7 | 39.6 | 52.1 | 79.1 | 46.0 | | ours | 31.1 | 60.7 | 29.8 | 51.0 | 31.7 | 33.2 | 70.9 | 39.2 | 53.3 | 79.1 | 48.0 | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```