update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: TrOCR-Ar-Small
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# TrOCR-Ar-Small
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [microsoft/trocr-small-stage1](https://huggingface.co/microsoft/trocr-small-stage1) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 2.2771
|
17 |
+
- Cer: 0.8211
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 1
|
38 |
+
- eval_batch_size: 1
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 3.0
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
49 |
+
| 3.6363 | 0.14 | 1000 | 2.7594 | 0.9370 |
|
50 |
+
| 2.7508 | 0.29 | 2000 | 2.6589 | 0.8901 |
|
51 |
+
| 2.6519 | 0.43 | 3000 | 2.6059 | 0.8647 |
|
52 |
+
| 2.5936 | 0.57 | 4000 | 2.5360 | 0.7941 |
|
53 |
+
| 2.5069 | 0.72 | 5000 | 2.4701 | 0.8262 |
|
54 |
+
| 2.4606 | 0.86 | 6000 | 2.4427 | 0.7552 |
|
55 |
+
| 2.4046 | 1.0 | 7000 | 2.4262 | 0.7822 |
|
56 |
+
| 2.3628 | 1.15 | 8000 | 2.3880 | 0.8186 |
|
57 |
+
| 2.3458 | 1.29 | 9000 | 2.3589 | 0.8262 |
|
58 |
+
| 2.3062 | 1.43 | 10000 | 2.3704 | 0.8693 |
|
59 |
+
| 2.2884 | 1.58 | 11000 | 2.3065 | 0.8034 |
|
60 |
+
| 2.263 | 1.72 | 12000 | 2.3413 | 0.8545 |
|
61 |
+
| 2.2473 | 1.86 | 13000 | 2.3314 | 0.7996 |
|
62 |
+
| 2.2318 | 2.01 | 14000 | 2.3034 | 0.8254 |
|
63 |
+
| 2.2004 | 2.15 | 15000 | 2.3068 | 0.8461 |
|
64 |
+
| 2.1774 | 2.29 | 16000 | 2.2799 | 0.8207 |
|
65 |
+
| 2.1684 | 2.44 | 17000 | 2.2746 | 0.8249 |
|
66 |
+
| 2.1637 | 2.58 | 18000 | 2.2540 | 0.7797 |
|
67 |
+
| 2.1418 | 2.72 | 19000 | 2.2595 | 0.7937 |
|
68 |
+
| 2.1309 | 2.87 | 20000 | 2.2771 | 0.8211 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.17.0
|
74 |
+
- Pytorch 1.10.0+cu111
|
75 |
+
- Datasets 2.0.0
|
76 |
+
- Tokenizers 0.11.6
|