Add sample code for loading the adapter
Browse files
README.md
CHANGED
@@ -23,14 +23,25 @@ pipeline_tag: summarization
|
|
23 |
This is a **LoRA fine-tuned adapter** built on [**meta-llama/Llama-3.2-1B-Instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It is designed for scientific paper summarization tasks and leverages **Low-Rank Adaptation (LoRA)** to enhance model performance efficiently while maintaining a low computational overhead.
|
24 |
|
25 |
|
26 |
-
|
27 |
| Model | ROUGE-1 | ROUGE-2 | ROUGE-3 | ROUGE-L |
|
28 |
|---------------------------|----------|----------|----------|----------|
|
29 |
| **Llama-3.2-1B-Instruct** | 36.69 | 7.47 | 1.95 | 19.36 |
|
30 |
| **Llama-PaperSummarization-LoRA** | **41.56** | **11.31** | **2.67** | **21.86** |
|
31 |
|
32 |
-
The model was evaluated on a **6K-sample test set** using **ROUGE scores** with
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
## **Dataset**
|
|
|
23 |
This is a **LoRA fine-tuned adapter** built on [**meta-llama/Llama-3.2-1B-Instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It is designed for scientific paper summarization tasks and leverages **Low-Rank Adaptation (LoRA)** to enhance model performance efficiently while maintaining a low computational overhead.
|
24 |
|
25 |
|
26 |
+
### **Performance comparison**
|
27 |
| Model | ROUGE-1 | ROUGE-2 | ROUGE-3 | ROUGE-L |
|
28 |
|---------------------------|----------|----------|----------|----------|
|
29 |
| **Llama-3.2-1B-Instruct** | 36.69 | 7.47 | 1.95 | 19.36 |
|
30 |
| **Llama-PaperSummarization-LoRA** | **41.56** | **11.31** | **2.67** | **21.86** |
|
31 |
|
32 |
+
The model was evaluated on a **6K-sample test set** using **ROUGE scores** with beam search (beam size = 4).
|
33 |
+
|
34 |
+
|
35 |
+
### **How to load**
|
36 |
+
```python
|
37 |
+
from transformers import LlamaForCausalLM, AutoTokenizer
|
38 |
+
from peft import PeftModel
|
39 |
+
|
40 |
+
base_model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
41 |
+
peft_model_id = "gabe-zhang/Llama-PaperSummarization-LoRA"
|
42 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
43 |
+
model.merge_and_unload()
|
44 |
+
```
|
45 |
|
46 |
|
47 |
## **Dataset**
|