gaarsmu commited on
Commit
aab3f0b
·
1 Parent(s): fa096df

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.49 +/- 0.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a14cd203512e62d241ef52bbdecb03bfc0e5536d4c7adc1d32600f626169ac9
3
+ size 108025
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f427d49fca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f427d4a5240>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 100000,
45
+ "_total_timesteps": 100000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679787810719891946,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzspFP54DDr88VbU+AFvGP5Km2z9mcSS/FBCyv+nCzD9cvRY+qbGqP8zSs76md62/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]]",
60
+ "desired_goal": "[[ 0.7726258 -0.5547427 0.3541659 ]\n [ 1.5496521 1.7160208 -0.6423553 ]\n [-1.3911157 1.5996982 0.14720672]\n [ 1.3335468 -0.35121763 -1.3552139 ]]",
61
+ "observation": "[[ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT3AAPgjewry6mko+9/UBPhfQojv1fzo+anZOvVdvarvB9ZA+y9GzvErc+z0h+xM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12542842 -0.02378751 0.19785586]\n [ 0.12691484 0.00496865 0.18212874]\n [-0.0504059 -0.00357719 0.28312495]\n [-0.02195062 0.12297876 0.14451267]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/qw3qjV97+UhpRSlIwBbJRLMowBdJRHQHCSlkH2RJV1fZQoaAZoCWgPQwhrK/aX3ZP6v5SGlFKUaBVLMmgWR0BwkJr8BMi9dX2UKGgGaAloD0MISkBMwoV8+L+UhpRSlGgVSzJoFkdAcI6LM9r433V9lChoBmgJaA9DCHcTfNP0WfW/lIaUUpRoFUsyaBZHQHCMfL1VYIV1fZQoaAZoCWgPQwgbKsb5m1D4v5SGlFKUaBVLMmgWR0BwnqScLBsRdX2UKGgGaAloD0MIMSdok8Mn97+UhpRSlGgVSzJoFkdAcJylpoK2KHV9lChoBmgJaA9DCJ4JTRJL6gDAlIaUUpRoFUsyaBZHQHCamuPmxMZ1fZQoaAZoCWgPQwjh0Fs8vOf8v5SGlFKUaBVLMmgWR0BwmI7MgU1ydX2UKGgGaAloD0MIjV4NUBqq+L+UhpRSlGgVSzJoFkdAcKo9Jz1bq3V9lChoBmgJaA9DCOFfBI2Z5ADAlIaUUpRoFUsyaBZHQHCoPe+Eh7p1fZQoaAZoCWgPQwhaZ3xfXOr3v5SGlFKUaBVLMmgWR0Bwpiz6ab4KdX2UKGgGaAloD0MImpmZmZkZ97+UhpRSlGgVSzJoFkdAcKQaY/mknHV9lChoBmgJaA9DCHNjesISj/2/lIaUUpRoFUsyaBZHQHC2LqyGBWh1fZQoaAZoCWgPQwjXhR+cTx38v5SGlFKUaBVLMmgWR0BwtC+mFajfdX2UKGgGaAloD0MIox03/G46/L+UhpRSlGgVSzJoFkdAcLIgVoHs1XV9lChoBmgJaA9DCKoNTkS/VgDAlIaUUpRoFUsyaBZHQHCwDcuanaZ1fZQoaAZoCWgPQwghHR7C+On4v5SGlFKUaBVLMmgWR0BwvdFVktmMdX2UKGgGaAloD0MI3nU25J9Z+7+UhpRSlGgVSzJoFkdAcLvN8E3bVXV9lChoBmgJaA9DCPz9YrZklfi/lIaUUpRoFUsyaBZHQHC5uL74zrN1fZQoaAZoCWgPQwiP/pdr0UL9v5SGlFKUaBVLMmgWR0Bwt6JEYwZgdX2UKGgGaAloD0MIkuaPaW3a87+UhpRSlGgVSzJoFkdAcMUJMxoIwHV9lChoBmgJaA9DCO+RzVXznPq/lIaUUpRoFUsyaBZHQHDDB5cC5mR1fZQoaAZoCWgPQwhn0TsVcI/2v5SGlFKUaBVLMmgWR0BwwPbxmTTwdX2UKGgGaAloD0MIHeOKi6My+r+UhpRSlGgVSzJoFkdAcL7jebd8A3V9lChoBmgJaA9DCI22KonsQ/m/lIaUUpRoFUsyaBZHQHDMrpqynk11fZQoaAZoCWgPQwhIpdjRONT6v5SGlFKUaBVLMmgWR0Bwyq0iQkondX2UKGgGaAloD0MIn8ppT8n5+r+UhpRSlGgVSzJoFkdAcMiXyRSxaHV9lChoBmgJaA9DCBprf2d7FADAlIaUUpRoFUsyaBZHQHDGg/1QIld1fZQoaAZoCWgPQwglkBK7trf9v5SGlFKUaBVLMmgWR0Bw06Wom5UcdX2UKGgGaAloD0MIwqVjzjN2/b+UhpRSlGgVSzJoFkdAcNGj7yhBaHV9lChoBmgJaA9DCMXJ/Q5Fgfy/lIaUUpRoFUsyaBZHQHDPj3Ehq0t1fZQoaAZoCWgPQwhXsI14stv4v5SGlFKUaBVLMmgWR0BwzXjXFtKqdX2UKGgGaAloD0MIhBJm2v6V87+UhpRSlGgVSzJoFkdAcNqhIvrWy3V9lChoBmgJaA9DCGITmbnApfi/lIaUUpRoFUsyaBZHQHDYnQ6ZH/d1fZQoaAZoCWgPQwixFMlXAin4v5SGlFKUaBVLMmgWR0Bw1ogdOqNqdX2UKGgGaAloD0MINUQV/gyv9L+UhpRSlGgVSzJoFkdAcNRxPfsNUnV9lChoBmgJaA9DCMrfvaPGRPa/lIaUUpRoFUsyaBZHQHDhlCkXUH91fZQoaAZoCWgPQwjbGaa21AH4v5SGlFKUaBVLMmgWR0Bw35EhJRO2dX2UKGgGaAloD0MIbk+Q2O7e+7+UhpRSlGgVSzJoFkdAcN18tPHktHV9lChoBmgJaA9DCLnDJjJzAfy/lIaUUpRoFUsyaBZHQHDbZsGgSOB1fZQoaAZoCWgPQwjGGcOcoM34v5SGlFKUaBVLMmgWR0Bw6KEXcgyNdX2UKGgGaAloD0MIYMjqVs/J9r+UhpRSlGgVSzJoFkdAcOadQwblzXV9lChoBmgJaA9DCK9eRUYHZP2/lIaUUpRoFUsyaBZHQHDkiFTNt651fZQoaAZoCWgPQwhsy4CzlOz/v5SGlFKUaBVLMmgWR0Bw4nFDOTq0dX2UKGgGaAloD0MIcXSV7q6z+r+UhpRSlGgVSzJoFkdAcO/olD4QBnV9lChoBmgJaA9DCNSeknNiz/a/lIaUUpRoFUsyaBZHQHDt5RXOnl51fZQoaAZoCWgPQwiEnPf/cYL5v5SGlFKUaBVLMmgWR0Bw69Ed/8VIdX2UKGgGaAloD0MIWivaHOe29b+UhpRSlGgVSzJoFkdAcOm9FWn0kHV9lChoBmgJaA9DCPT+P06YsPm/lIaUUpRoFUsyaBZHQHD3Aj2SMcZ1fZQoaAZoCWgPQwhLsDic+VX8v5SGlFKUaBVLMmgWR0Bw9P6XSjQBdX2UKGgGaAloD0MIk3L3OT7a+L+UhpRSlGgVSzJoFkdAcPLqQzUI9nV9lChoBmgJaA9DCNWw3xPrFP6/lIaUUpRoFUsyaBZHQHDw01ZTyax1fZQoaAZoCWgPQwiWP98WLNX2v5SGlFKUaBVLMmgWR0Bw/h5zHS4OdX2UKGgGaAloD0MIuTZUjPO3/L+UhpRSlGgVSzJoFkdAcPwbhm5DqnV9lChoBmgJaA9DCNZwkXu6+vq/lIaUUpRoFUsyaBZHQHD6B2B8QZp1fZQoaAZoCWgPQwggnE8dq5T4v5SGlFKUaBVLMmgWR0Bw9/CiyprDdX2UKGgGaAloD0MIN1MhHomX+L+UhpRSlGgVSzJoFkdAcQViTMaCMHV9lChoBmgJaA9DCKLxRBDnYf2/lIaUUpRoFUsyaBZHQHEDYubqhUR1fZQoaAZoCWgPQwiTq1j8pjD3v5SGlFKUaBVLMmgWR0BxAU/Z/Tb4dX2UKGgGaAloD0MIxHqjVpi++r+UhpRSlGgVSzJoFkdAcP87pmmLtXV9lChoBmgJaA9DCFlPrb66qvy/lIaUUpRoFUsyaBZHQHENB9b5dnl1fZQoaAZoCWgPQwh+GYwRicL5v5SGlFKUaBVLMmgWR0BxCwRf4REndX2UKGgGaAloD0MIceXsndEW+r+UhpRSlGgVSzJoFkdAcQjvvBrN4nV9lChoBmgJaA9DCJiHTPkQlPe/lIaUUpRoFUsyaBZHQHEG2Mju8bt1fZQoaAZoCWgPQwhUOlj/5/D6v5SGlFKUaBVLMmgWR0BxFFJqZc9odX2UKGgGaAloD0MIE2QEVDjC+7+UhpRSlGgVSzJoFkdAcRJOryUcGXV9lChoBmgJaA9DCEijAifbgPq/lIaUUpRoFUsyaBZHQHEQOxwAEMd1fZQoaAZoCWgPQwi6n1OQnw3/v5SGlFKUaBVLMmgWR0BxDiTnq3VkdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAcRuao/A0sXV9lChoBmgJaA9DCBo09E9wMfy/lIaUUpRoFUsyaBZHQHEZl6zE74l1fZQoaAZoCWgPQwjEsMOY9JcAwJSGlFKUaBVLMmgWR0BxF4Jv5xiodX2UKGgGaAloD0MIaXIxBtax+r+UhpRSlGgVSzJoFkdAcRVsgdOqN3V9lChoBmgJaA9DCBefAmA8A/S/lIaUUpRoFUsyaBZHQHEixS9/SYx1fZQoaAZoCWgPQwiSPq2iP7T+v5SGlFKUaBVLMmgWR0BxIMFA3T/idX2UKGgGaAloD0MIk45yMJuA+L+UhpRSlGgVSzJoFkdAcR6sH0K7ZnV9lChoBmgJaA9DCJPEknL3+fu/lIaUUpRoFUsyaBZHQHEcl2/zreJ1fZQoaAZoCWgPQwiqmbUUkDb5v5SGlFKUaBVLMmgWR0BxKo/SpiqidX2UKGgGaAloD0MIWRe30QAe+L+UhpRSlGgVSzJoFkdAcSiQUpNKy3V9lChoBmgJaA9DCE5k5gKXh/e/lIaUUpRoFUsyaBZHQHEmfhZQpF11fZQoaAZoCWgPQwigibDh6XUBwJSGlFKUaBVLMmgWR0BxJGdlNDc/dX2UKGgGaAloD0MI8gnZeRtb+b+UhpRSlGgVSzJoFkdAcTHJtzjm0XV9lChoBmgJaA9DCLX9KytNSvm/lIaUUpRoFUsyaBZHQHEvyGzru6V1fZQoaAZoCWgPQwiWehaE8j76v5SGlFKUaBVLMmgWR0BxLbSYw7DEdX2UKGgGaAloD0MIhv90AwUe/L+UhpRSlGgVSzJoFkdAcSueruIAO3V9lChoBmgJaA9DCPlOzHox1Pi/lIaUUpRoFUsyaBZHQHE5BkEs8Pp1fZQoaAZoCWgPQwjyCkRPyuT4v5SGlFKUaBVLMmgWR0BxNwVVPva2dX2UKGgGaAloD0MIqfsApDbx/7+UhpRSlGgVSzJoFkdAcTTwr1/UfHV9lChoBmgJaA9DCEErMGR1q/e/lIaUUpRoFUsyaBZHQHEy2iHqNZN1fZQoaAZoCWgPQwiQ2sTJ/U76v5SGlFKUaBVLMmgWR0BxQDt6X0GvdX2UKGgGaAloD0MIbO7of7lW+b+UhpRSlGgVSzJoFkdAcT44qwyIpHV9lChoBmgJaA9DCKD83TtqzPi/lIaUUpRoFUsyaBZHQHE8JoTPBzp1fZQoaAZoCWgPQwjwTGiSWBL5v5SGlFKUaBVLMmgWR0BxOg//vOQhdX2UKGgGaAloD0MI4fCCiNR0/b+UhpRSlGgVSzJoFkdAcUdl3yI553V9lChoBmgJaA9DCFJjQswlVf6/lIaUUpRoFUsyaBZHQHFFYr4Fia11fZQoaAZoCWgPQwjOUx1yM/wAwJSGlFKUaBVLMmgWR0BxQ1PAO8TSdX2UKGgGaAloD0MIl4xjJHvkAMCUhpRSlGgVSzJoFkdAcUE8QZn+Q3V9lChoBmgJaA9DCAkX8ghuJPW/lIaUUpRoFUsyaBZHQHFO2s3hn8N1fZQoaAZoCWgPQwh1riglBOv9v5SGlFKUaBVLMmgWR0BxTNi9Zid8dX2UKGgGaAloD0MI6q7sgsG1+b+UhpRSlGgVSzJoFkdAcUrEcsDnvHV9lChoBmgJaA9DCG8rvTYba/6/lIaUUpRoFUsyaBZHQHFIr2g39751ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 5000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ced493050c3da9159f2914bf5d7dbf1fe74dffb67412c37e7c9599534574f8df
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04a34bc1a3f2997ca98145664e73f61d1695d796c14944c2a67c5acaa9585dd3
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f427d49fca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f427d4a5240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679787810719891946, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+qGBWPiVoGrxkQ+w+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzspFP54DDr88VbU+AFvGP5Km2z9mcSS/FBCyv+nCzD9cvRY+qbGqP8zSs76md62/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyoYFY+JWgavGRD7D42Df47q+NZOhimhzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]\n [ 0.20935309 -0.00942424 0.46145165]]", "desired_goal": "[[ 0.7726258 -0.5547427 0.3541659 ]\n [ 1.5496521 1.7160208 -0.6423553 ]\n [-1.3911157 1.5996982 0.14720672]\n [ 1.3335468 -0.35121763 -1.3552139 ]]", "observation": "[[ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]\n [ 0.20935309 -0.00942424 0.46145165 0.00775304 0.00083118 0.01655869]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT3AAPgjewry6mko+9/UBPhfQojv1fzo+anZOvVdvarvB9ZA+y9GzvErc+z0h+xM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12542842 -0.02378751 0.19785586]\n [ 0.12691484 0.00496865 0.18212874]\n [-0.0504059 -0.00357719 0.28312495]\n [-0.02195062 0.12297876 0.14451267]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/qw3qjV97+UhpRSlIwBbJRLMowBdJRHQHCSlkH2RJV1fZQoaAZoCWgPQwhrK/aX3ZP6v5SGlFKUaBVLMmgWR0BwkJr8BMi9dX2UKGgGaAloD0MISkBMwoV8+L+UhpRSlGgVSzJoFkdAcI6LM9r433V9lChoBmgJaA9DCHcTfNP0WfW/lIaUUpRoFUsyaBZHQHCMfL1VYIV1fZQoaAZoCWgPQwgbKsb5m1D4v5SGlFKUaBVLMmgWR0BwnqScLBsRdX2UKGgGaAloD0MIMSdok8Mn97+UhpRSlGgVSzJoFkdAcJylpoK2KHV9lChoBmgJaA9DCJ4JTRJL6gDAlIaUUpRoFUsyaBZHQHCamuPmxMZ1fZQoaAZoCWgPQwjh0Fs8vOf8v5SGlFKUaBVLMmgWR0BwmI7MgU1ydX2UKGgGaAloD0MIjV4NUBqq+L+UhpRSlGgVSzJoFkdAcKo9Jz1bq3V9lChoBmgJaA9DCOFfBI2Z5ADAlIaUUpRoFUsyaBZHQHCoPe+Eh7p1fZQoaAZoCWgPQwhaZ3xfXOr3v5SGlFKUaBVLMmgWR0Bwpiz6ab4KdX2UKGgGaAloD0MImpmZmZkZ97+UhpRSlGgVSzJoFkdAcKQaY/mknHV9lChoBmgJaA9DCHNjesISj/2/lIaUUpRoFUsyaBZHQHC2LqyGBWh1fZQoaAZoCWgPQwjXhR+cTx38v5SGlFKUaBVLMmgWR0BwtC+mFajfdX2UKGgGaAloD0MIox03/G46/L+UhpRSlGgVSzJoFkdAcLIgVoHs1XV9lChoBmgJaA9DCKoNTkS/VgDAlIaUUpRoFUsyaBZHQHCwDcuanaZ1fZQoaAZoCWgPQwghHR7C+On4v5SGlFKUaBVLMmgWR0BwvdFVktmMdX2UKGgGaAloD0MI3nU25J9Z+7+UhpRSlGgVSzJoFkdAcLvN8E3bVXV9lChoBmgJaA9DCPz9YrZklfi/lIaUUpRoFUsyaBZHQHC5uL74zrN1fZQoaAZoCWgPQwiP/pdr0UL9v5SGlFKUaBVLMmgWR0Bwt6JEYwZgdX2UKGgGaAloD0MIkuaPaW3a87+UhpRSlGgVSzJoFkdAcMUJMxoIwHV9lChoBmgJaA9DCO+RzVXznPq/lIaUUpRoFUsyaBZHQHDDB5cC5mR1fZQoaAZoCWgPQwhn0TsVcI/2v5SGlFKUaBVLMmgWR0BwwPbxmTTwdX2UKGgGaAloD0MIHeOKi6My+r+UhpRSlGgVSzJoFkdAcL7jebd8A3V9lChoBmgJaA9DCI22KonsQ/m/lIaUUpRoFUsyaBZHQHDMrpqynk11fZQoaAZoCWgPQwhIpdjRONT6v5SGlFKUaBVLMmgWR0Bwyq0iQkondX2UKGgGaAloD0MIn8ppT8n5+r+UhpRSlGgVSzJoFkdAcMiXyRSxaHV9lChoBmgJaA9DCBprf2d7FADAlIaUUpRoFUsyaBZHQHDGg/1QIld1fZQoaAZoCWgPQwglkBK7trf9v5SGlFKUaBVLMmgWR0Bw06Wom5UcdX2UKGgGaAloD0MIwqVjzjN2/b+UhpRSlGgVSzJoFkdAcNGj7yhBaHV9lChoBmgJaA9DCMXJ/Q5Fgfy/lIaUUpRoFUsyaBZHQHDPj3Ehq0t1fZQoaAZoCWgPQwhXsI14stv4v5SGlFKUaBVLMmgWR0BwzXjXFtKqdX2UKGgGaAloD0MIhBJm2v6V87+UhpRSlGgVSzJoFkdAcNqhIvrWy3V9lChoBmgJaA9DCGITmbnApfi/lIaUUpRoFUsyaBZHQHDYnQ6ZH/d1fZQoaAZoCWgPQwixFMlXAin4v5SGlFKUaBVLMmgWR0Bw1ogdOqNqdX2UKGgGaAloD0MINUQV/gyv9L+UhpRSlGgVSzJoFkdAcNRxPfsNUnV9lChoBmgJaA9DCMrfvaPGRPa/lIaUUpRoFUsyaBZHQHDhlCkXUH91fZQoaAZoCWgPQwjbGaa21AH4v5SGlFKUaBVLMmgWR0Bw35EhJRO2dX2UKGgGaAloD0MIbk+Q2O7e+7+UhpRSlGgVSzJoFkdAcN18tPHktHV9lChoBmgJaA9DCLnDJjJzAfy/lIaUUpRoFUsyaBZHQHDbZsGgSOB1fZQoaAZoCWgPQwjGGcOcoM34v5SGlFKUaBVLMmgWR0Bw6KEXcgyNdX2UKGgGaAloD0MIYMjqVs/J9r+UhpRSlGgVSzJoFkdAcOadQwblzXV9lChoBmgJaA9DCK9eRUYHZP2/lIaUUpRoFUsyaBZHQHDkiFTNt651fZQoaAZoCWgPQwhsy4CzlOz/v5SGlFKUaBVLMmgWR0Bw4nFDOTq0dX2UKGgGaAloD0MIcXSV7q6z+r+UhpRSlGgVSzJoFkdAcO/olD4QBnV9lChoBmgJaA9DCNSeknNiz/a/lIaUUpRoFUsyaBZHQHDt5RXOnl51fZQoaAZoCWgPQwiEnPf/cYL5v5SGlFKUaBVLMmgWR0Bw69Ed/8VIdX2UKGgGaAloD0MIWivaHOe29b+UhpRSlGgVSzJoFkdAcOm9FWn0kHV9lChoBmgJaA9DCPT+P06YsPm/lIaUUpRoFUsyaBZHQHD3Aj2SMcZ1fZQoaAZoCWgPQwhLsDic+VX8v5SGlFKUaBVLMmgWR0Bw9P6XSjQBdX2UKGgGaAloD0MIk3L3OT7a+L+UhpRSlGgVSzJoFkdAcPLqQzUI9nV9lChoBmgJaA9DCNWw3xPrFP6/lIaUUpRoFUsyaBZHQHDw01ZTyax1fZQoaAZoCWgPQwiWP98WLNX2v5SGlFKUaBVLMmgWR0Bw/h5zHS4OdX2UKGgGaAloD0MIuTZUjPO3/L+UhpRSlGgVSzJoFkdAcPwbhm5DqnV9lChoBmgJaA9DCNZwkXu6+vq/lIaUUpRoFUsyaBZHQHD6B2B8QZp1fZQoaAZoCWgPQwggnE8dq5T4v5SGlFKUaBVLMmgWR0Bw9/CiyprDdX2UKGgGaAloD0MIN1MhHomX+L+UhpRSlGgVSzJoFkdAcQViTMaCMHV9lChoBmgJaA9DCKLxRBDnYf2/lIaUUpRoFUsyaBZHQHEDYubqhUR1fZQoaAZoCWgPQwiTq1j8pjD3v5SGlFKUaBVLMmgWR0BxAU/Z/Tb4dX2UKGgGaAloD0MIxHqjVpi++r+UhpRSlGgVSzJoFkdAcP87pmmLtXV9lChoBmgJaA9DCFlPrb66qvy/lIaUUpRoFUsyaBZHQHENB9b5dnl1fZQoaAZoCWgPQwh+GYwRicL5v5SGlFKUaBVLMmgWR0BxCwRf4REndX2UKGgGaAloD0MIceXsndEW+r+UhpRSlGgVSzJoFkdAcQjvvBrN4nV9lChoBmgJaA9DCJiHTPkQlPe/lIaUUpRoFUsyaBZHQHEG2Mju8bt1fZQoaAZoCWgPQwhUOlj/5/D6v5SGlFKUaBVLMmgWR0BxFFJqZc9odX2UKGgGaAloD0MIE2QEVDjC+7+UhpRSlGgVSzJoFkdAcRJOryUcGXV9lChoBmgJaA9DCEijAifbgPq/lIaUUpRoFUsyaBZHQHEQOxwAEMd1fZQoaAZoCWgPQwi6n1OQnw3/v5SGlFKUaBVLMmgWR0BxDiTnq3VkdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAcRuao/A0sXV9lChoBmgJaA9DCBo09E9wMfy/lIaUUpRoFUsyaBZHQHEZl6zE74l1fZQoaAZoCWgPQwjEsMOY9JcAwJSGlFKUaBVLMmgWR0BxF4Jv5xiodX2UKGgGaAloD0MIaXIxBtax+r+UhpRSlGgVSzJoFkdAcRVsgdOqN3V9lChoBmgJaA9DCBefAmA8A/S/lIaUUpRoFUsyaBZHQHEixS9/SYx1fZQoaAZoCWgPQwiSPq2iP7T+v5SGlFKUaBVLMmgWR0BxIMFA3T/idX2UKGgGaAloD0MIk45yMJuA+L+UhpRSlGgVSzJoFkdAcR6sH0K7ZnV9lChoBmgJaA9DCJPEknL3+fu/lIaUUpRoFUsyaBZHQHEcl2/zreJ1fZQoaAZoCWgPQwiqmbUUkDb5v5SGlFKUaBVLMmgWR0BxKo/SpiqidX2UKGgGaAloD0MIWRe30QAe+L+UhpRSlGgVSzJoFkdAcSiQUpNKy3V9lChoBmgJaA9DCE5k5gKXh/e/lIaUUpRoFUsyaBZHQHEmfhZQpF11fZQoaAZoCWgPQwigibDh6XUBwJSGlFKUaBVLMmgWR0BxJGdlNDc/dX2UKGgGaAloD0MI8gnZeRtb+b+UhpRSlGgVSzJoFkdAcTHJtzjm0XV9lChoBmgJaA9DCLX9KytNSvm/lIaUUpRoFUsyaBZHQHEvyGzru6V1fZQoaAZoCWgPQwiWehaE8j76v5SGlFKUaBVLMmgWR0BxLbSYw7DEdX2UKGgGaAloD0MIhv90AwUe/L+UhpRSlGgVSzJoFkdAcSueruIAO3V9lChoBmgJaA9DCPlOzHox1Pi/lIaUUpRoFUsyaBZHQHE5BkEs8Pp1fZQoaAZoCWgPQwjyCkRPyuT4v5SGlFKUaBVLMmgWR0BxNwVVPva2dX2UKGgGaAloD0MIqfsApDbx/7+UhpRSlGgVSzJoFkdAcTTwr1/UfHV9lChoBmgJaA9DCEErMGR1q/e/lIaUUpRoFUsyaBZHQHEy2iHqNZN1fZQoaAZoCWgPQwiQ2sTJ/U76v5SGlFKUaBVLMmgWR0BxQDt6X0GvdX2UKGgGaAloD0MIbO7of7lW+b+UhpRSlGgVSzJoFkdAcT44qwyIpHV9lChoBmgJaA9DCKD83TtqzPi/lIaUUpRoFUsyaBZHQHE8JoTPBzp1fZQoaAZoCWgPQwjwTGiSWBL5v5SGlFKUaBVLMmgWR0BxOg//vOQhdX2UKGgGaAloD0MI4fCCiNR0/b+UhpRSlGgVSzJoFkdAcUdl3yI553V9lChoBmgJaA9DCFJjQswlVf6/lIaUUpRoFUsyaBZHQHFFYr4Fia11fZQoaAZoCWgPQwjOUx1yM/wAwJSGlFKUaBVLMmgWR0BxQ1PAO8TSdX2UKGgGaAloD0MIl4xjJHvkAMCUhpRSlGgVSzJoFkdAcUE8QZn+Q3V9lChoBmgJaA9DCAkX8ghuJPW/lIaUUpRoFUsyaBZHQHFO2s3hn8N1fZQoaAZoCWgPQwh1riglBOv9v5SGlFKUaBVLMmgWR0BxTNi9Zid8dX2UKGgGaAloD0MI6q7sgsG1+b+UhpRSlGgVSzJoFkdAcUrEcsDnvHV9lChoBmgJaA9DCG8rvTYba/6/lIaUUpRoFUsyaBZHQHFIr2g39751ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (800 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4903837692108937, "std_reward": 0.2070445305108437, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T23:48:13.804520"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:705cd112461176aefdd7d826457364abd5ef0366e1ed7e1368963532cde0e6ca
3
+ size 3056