update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- F1: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -36,30 +36,80 @@ More information needed
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
-
- learning_rate:
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
-
| 0.
|
52 |
-
|
|
53 |
-
| 0.
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
|
|
61 |
-
|
|
62 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7903
|
20 |
+
- F1: 0.7123
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 2
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 0.6542 | 0.03 | 16 | 0.8127 | 0.6943 |
|
52 |
+
| 0.574 | 0.06 | 32 | 0.7935 | 0.6969 |
|
53 |
+
| 0.7078 | 0.1 | 48 | 0.8009 | 0.6957 |
|
54 |
+
| 0.5408 | 0.13 | 64 | 0.7863 | 0.7014 |
|
55 |
+
| 0.5343 | 0.16 | 80 | 0.8077 | 0.6996 |
|
56 |
+
| 0.5768 | 0.19 | 96 | 0.8239 | 0.6900 |
|
57 |
+
| 0.6633 | 0.22 | 112 | 0.7942 | 0.7028 |
|
58 |
+
| 0.5409 | 0.26 | 128 | 0.8025 | 0.6960 |
|
59 |
+
| 0.7043 | 0.29 | 144 | 0.7954 | 0.6813 |
|
60 |
+
| 0.5358 | 0.32 | 160 | 0.8058 | 0.6988 |
|
61 |
+
| 0.5558 | 0.35 | 176 | 0.8476 | 0.6799 |
|
62 |
+
| 0.5759 | 0.38 | 192 | 0.8232 | 0.7017 |
|
63 |
+
| 0.596 | 0.42 | 208 | 0.8240 | 0.7072 |
|
64 |
+
| 0.5977 | 0.45 | 224 | 0.8683 | 0.6947 |
|
65 |
+
| 0.5655 | 0.48 | 240 | 0.8378 | 0.7053 |
|
66 |
+
| 0.6274 | 0.51 | 256 | 0.8175 | 0.6980 |
|
67 |
+
| 0.4952 | 0.55 | 272 | 0.8203 | 0.6957 |
|
68 |
+
| 0.6501 | 0.58 | 288 | 0.8236 | 0.7014 |
|
69 |
+
| 0.5365 | 0.61 | 304 | 0.8082 | 0.7059 |
|
70 |
+
| 0.5598 | 0.64 | 320 | 0.8052 | 0.7121 |
|
71 |
+
| 0.5692 | 0.67 | 336 | 0.7989 | 0.7075 |
|
72 |
+
| 0.526 | 0.71 | 352 | 0.8030 | 0.6961 |
|
73 |
+
| 0.5505 | 0.74 | 368 | 0.8157 | 0.7137 |
|
74 |
+
| 0.4759 | 0.77 | 384 | 0.8466 | 0.6937 |
|
75 |
+
| 0.6622 | 0.8 | 400 | 0.8518 | 0.6982 |
|
76 |
+
| 0.6298 | 0.83 | 416 | 0.8272 | 0.6976 |
|
77 |
+
| 0.6311 | 0.87 | 432 | 0.8445 | 0.6793 |
|
78 |
+
| 0.5678 | 0.9 | 448 | 0.8096 | 0.6897 |
|
79 |
+
| 0.6687 | 0.93 | 464 | 0.7948 | 0.6968 |
|
80 |
+
| 0.6654 | 0.96 | 480 | 0.8047 | 0.7076 |
|
81 |
+
| 0.6572 | 0.99 | 496 | 0.7944 | 0.7037 |
|
82 |
+
| 0.5845 | 1.03 | 512 | 0.7772 | 0.7030 |
|
83 |
+
| 0.6611 | 1.06 | 528 | 0.7829 | 0.7005 |
|
84 |
+
| 0.4988 | 1.09 | 544 | 0.7953 | 0.7070 |
|
85 |
+
| 0.6355 | 1.12 | 560 | 0.8252 | 0.6983 |
|
86 |
+
| 0.5464 | 1.15 | 576 | 0.8293 | 0.7044 |
|
87 |
+
| 0.6188 | 1.19 | 592 | 0.8077 | 0.7073 |
|
88 |
+
| 0.5125 | 1.22 | 608 | 0.7975 | 0.7041 |
|
89 |
+
| 0.6221 | 1.25 | 624 | 0.7947 | 0.7041 |
|
90 |
+
| 0.5806 | 1.28 | 640 | 0.8027 | 0.6983 |
|
91 |
+
| 0.6335 | 1.31 | 656 | 0.7992 | 0.7027 |
|
92 |
+
| 0.6283 | 1.35 | 672 | 0.7836 | 0.7055 |
|
93 |
+
| 0.6485 | 1.38 | 688 | 0.7891 | 0.7104 |
|
94 |
+
| 0.5596 | 1.41 | 704 | 0.8146 | 0.7015 |
|
95 |
+
| 0.4928 | 1.44 | 720 | 0.7998 | 0.7088 |
|
96 |
+
| 0.5809 | 1.47 | 736 | 0.7850 | 0.7056 |
|
97 |
+
| 0.5117 | 1.51 | 752 | 0.7994 | 0.7053 |
|
98 |
+
| 0.6012 | 1.54 | 768 | 0.7960 | 0.7081 |
|
99 |
+
| 0.5213 | 1.57 | 784 | 0.8109 | 0.7034 |
|
100 |
+
| 0.6018 | 1.6 | 800 | 0.7927 | 0.7134 |
|
101 |
+
| 0.5851 | 1.64 | 816 | 0.7978 | 0.7108 |
|
102 |
+
| 0.6571 | 1.67 | 832 | 0.8131 | 0.7004 |
|
103 |
+
| 0.5215 | 1.7 | 848 | 0.7942 | 0.7146 |
|
104 |
+
| 0.5372 | 1.73 | 864 | 0.7957 | 0.7110 |
|
105 |
+
| 0.5511 | 1.76 | 880 | 0.7915 | 0.7138 |
|
106 |
+
| 0.5991 | 1.8 | 896 | 0.7899 | 0.7121 |
|
107 |
+
| 0.6128 | 1.83 | 912 | 0.7879 | 0.7136 |
|
108 |
+
| 0.5493 | 1.86 | 928 | 0.7960 | 0.7099 |
|
109 |
+
| 0.6304 | 1.89 | 944 | 0.7924 | 0.7102 |
|
110 |
+
| 0.4456 | 1.92 | 960 | 0.7904 | 0.7126 |
|
111 |
+
| 0.5484 | 1.96 | 976 | 0.7906 | 0.7127 |
|
112 |
+
| 0.515 | 1.99 | 992 | 0.7903 | 0.7123 |
|
113 |
|
114 |
|
115 |
### Framework versions
|