--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-tiny-8l-10M results: [] --- # roberta-tiny-8l-10M This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.3437 - Accuracy: 0.0512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.8102 | 1.04 | 50 | 7.3747 | 0.0514 | | 7.805 | 2.08 | 100 | 7.3699 | 0.0517 | | 7.7907 | 3.12 | 150 | 7.3595 | 0.0517 | | 7.7838 | 4.16 | 200 | 7.3617 | 0.0514 | | 7.7706 | 5.21 | 250 | 7.3586 | 0.0514 | | 7.2933 | 6.25 | 300 | 7.3566 | 0.0513 | | 7.2932 | 7.29 | 350 | 7.3527 | 0.0516 | | 7.2986 | 8.33 | 400 | 7.3561 | 0.0516 | | 7.289 | 9.37 | 450 | 7.3495 | 0.0515 | | 7.2879 | 10.41 | 500 | 7.3455 | 0.0514 | | 7.276 | 11.45 | 550 | 7.3477 | 0.0513 | | 7.3072 | 12.49 | 600 | 7.3446 | 0.0516 | | 7.2978 | 13.53 | 650 | 7.3463 | 0.0514 | | 7.2857 | 14.58 | 700 | 7.3426 | 0.0515 | | 7.2868 | 15.62 | 750 | 7.3438 | 0.0515 | | 7.2973 | 16.66 | 800 | 7.3442 | 0.0517 | | 7.2988 | 17.7 | 850 | 7.3437 | 0.0512 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1