g12021202 commited on
Commit
0c3bcc4
·
verified ·
1 Parent(s): 0417ee9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -175
README.md CHANGED
@@ -1,202 +1,88 @@
1
- ---
2
- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
75
 
 
 
 
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
 
201
 
202
- - PEFT 0.13.2
 
 
 
 
 
1
+ # Llama-3.2-3B: Heat Exchanger Finetuned Model
 
 
 
 
 
 
 
2
 
3
+ This repository provides the finetuned version of the Llama-3.2-3B model with specific enhancements for tasks related to heat exchanger simulations and analyses. This model has been optimized using PEFT (Parameter-Efficient Fine-Tuning) for domain-specific applications in engineering and fluid dynamics.
4
 
5
+ ---
6
 
7
  ## Model Details
8
 
9
+ ### Overview
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ - **Base Model:** `unsloth/Llama-3.2-3B-Instruct-bnb-4bit`
12
+ - **Finetuning Framework:** [PEFT](https://github.com/huggingface/peft)
13
+ - **Language:** Primarily English
14
+ - **Domain:** Engineering, Fluid Dynamics
15
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
16
+ - **Developed by:** g12021202
17
+ - **Model Type:** Instruction-tuned, lightweight LLM for engineering simulations
18
+ - **Intended Use:** Assisting with tasks such as thermal calculations, troubleshooting heat exchanger systems, and providing educational explanations for engineering concepts.
19
 
20
+ ---
 
 
 
 
21
 
22
+ ## Installation and Usage
23
 
24
+ ### Install Dependencies
25
 
26
+ To use this model, ensure you have the following installed:
27
 
28
+ - `transformers`
29
+ - `peft`
30
+ - `accelerate`
31
+ - `datasets`
32
 
33
+ You can install the required libraries with:
34
 
35
+ ```bash
36
+ pip install transformers peft accelerate datasets
37
+ ```
38
+ Load the Model
39
+ Here's how to load and use the model in Python:
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+ from peft import PeftModel
43
 
44
+ # Load tokenizer and base model
45
+ tokenizer = AutoTokenizer.from_pretrained("g12021202/Llama-3.2_3B_GGUF_heat_exchanger")
46
+ model = AutoModelForCausalLM.from_pretrained("g12021202/Llama-3.2_3B_GGUF_heat_exchanger")
47
 
48
+ # Prepare input
49
+ input_text = "Explain the working principle of a shell-and-tube heat exchanger."
50
+ inputs = tokenizer(input_text, return_tensors="pt")
51
 
52
+ # Generate response
53
+ output = model.generate(**inputs, max_length=150)
54
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
55
+ ```
56
  ## Training Details
57
 
58
+ * **Training Data:** [Describe the training data used, e.g., "A dataset of technical documents, research papers, and online resources related to GGUF heat exchangers."]
59
+ * **Training Procedure:**
60
+ * **Preprocessing:** [Describe any data preprocessing steps, e.g., "Data cleaning, tokenization, and splitting into training and validation sets."]
61
+ * **Training Hyperparameters:**
62
+ * **Optimizer:** [Specify the optimizer used, e.g., AdamW]
63
+ * **Learning Rate:** [Specify the learning rate]
64
+ * **Batch Size:** [Specify the batch size]
65
+ * **Epochs:** [Specify the number of epochs]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## Evaluation
68
 
69
+ * **Testing Data:** [Describe the testing data used for evaluation.]
70
+ * **Metrics:**
71
+ * [Specify the evaluation metrics used, e.g., perplexity, accuracy, F1-score]
72
+ * **Results:** [Summarize the evaluation results.]
 
 
 
 
 
73
 
74
+ ## Model Card Authors
75
 
76
+ * [Your Name/Organization]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ## Model Card Contact
79
 
80
+ * [Your Email Address]
81
+
82
+ **Note:**
83
 
84
+ * This is a basic template and may require further customization based on your specific model and use case.
85
+ * Remember to replace the placeholder information with actual details about your model.
86
+ * Consider adding sections like "Environmental Impact" and "Technical Specifications" if relevant to your model.
87
+ * Ensure that the model card accurately reflects the capabilities and limitations of your model.
88
+ * I hope this revised README.md is more informative and helpful!