# coding=utf-8 # Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ResNet model.""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from transformers.modeling_utils import BackboneMixin, PreTrainedModel from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers import ResNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ResNetConfig" _FEAT_EXTRACTOR_FOR_DOC = "AutoImageProcessor" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/resnet-50" _EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50" _IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co./models?filter=resnet ] class ResNetConvLayer(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu" ): super().__init__() self.convolution = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False ) self.normalization = nn.BatchNorm2d(out_channels) self.activation = ACT2FN[activation] if activation is not None else nn.Identity() def forward(self, input: Tensor) -> Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class ResNetEmbeddings(nn.Module): """ ResNet Embeddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: ResNetConfig): super().__init__() self.embedder = ResNetConvLayer( config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act ) self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.num_channels = config.num_channels def forward(self, pixel_values: Tensor) -> Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embedding = self.embedder(pixel_values) embedding = self.pooler(embedding) return embedding class ResNetShortCut(nn.Module): """ ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ def __init__(self, in_channels: int, out_channels: int, stride: int = 2): super().__init__() self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) self.normalization = nn.BatchNorm2d(out_channels) def forward(self, input: Tensor) -> Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) return hidden_state class ResNetBasicLayer(nn.Module): """ A classic ResNet's residual layer composed by two `3x3` convolutions. """ def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 self.shortcut = ( ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( ResNetConvLayer(in_channels, out_channels, stride=stride), ResNetConvLayer(out_channels, out_channels, activation=None), ) self.activation = ACT2FN[activation] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class ResNetBottleNeckLayer(nn.Module): """ A classic ResNet's bottleneck layer composed by three `3x3` convolutions. The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3` convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. """ def __init__( self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", reduction: int = 4 ): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 reduces_channels = out_channels // reduction self.shortcut = ( ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( ResNetConvLayer(in_channels, reduces_channels, kernel_size=1), ResNetConvLayer(reduces_channels, reduces_channels, stride=stride), ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None), ) self.activation = ACT2FN[activation] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class ResNetStage(nn.Module): """ A ResNet stage composed by stacked layers. """ def __init__( self, config: ResNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, ): super().__init__() layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer self.layers = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(in_channels, out_channels, stride=stride, activation=config.hidden_act), *[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)], ) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) hidden_state = hidden_state + 1 print("having fun in my custom code") return hidden_state class ResNetEncoder(nn.Module): def __init__(self, config: ResNetConfig): super().__init__() self.stages = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( config, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth)) def forward( self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> BaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_state, hidden_states=hidden_states, ) class ResNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ResNetConfig base_model_prefix = "resnet" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, ResNetEncoder): module.gradient_checkpointing = value RESNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ RESNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top.", RESNET_START_DOCSTRING, ) class ResNetModel(ResNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embedder = ResNetEmbeddings(config) self.encoder = ResNetEncoder(config) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_FEAT_EXTRACTOR_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, RESNET_START_DOCSTRING, ) class ResNetCustomForImageClassification(ResNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.resnet = ResNetModel(config) # classification head self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_FEAT_EXTRACTOR_FOR_DOC, checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """, RESNET_START_DOCSTRING, ) class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) self.stage_names = config.stage_names self.embedder = ResNetEmbeddings(config) self.encoder = ResNetEncoder(config) self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]] out_feature_channels = {} out_feature_channels["stem"] = config.embedding_size for idx, stage in enumerate(self.stage_names[1:]): out_feature_channels[stage] = config.hidden_sizes[idx] self.out_feature_channels = out_feature_channels # initialize weights and apply final processing self.post_init() @property def channels(self): return [self.out_feature_channels[name] for name in self.out_features] @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") >>> model = AutoBackbone.from_pretrained( ... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] ... ) >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) >>> feature_maps = outputs.feature_maps >>> list(feature_maps[-1].shape) [1, 2048, 7, 7] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) embedding_output = self.embedder(pixel_values) outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True) hidden_states = outputs.hidden_states feature_maps = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )