|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch ResNet model.""" |
|
|
|
from typing import Optional |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import Tensor, nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BackboneOutput, |
|
BaseModelOutputWithNoAttention, |
|
BaseModelOutputWithPoolingAndNoAttention, |
|
ImageClassifierOutputWithNoAttention, |
|
) |
|
from transformers.modeling_utils import BackboneMixin, PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers import ResNetConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "ResNetConfig" |
|
_FEAT_EXTRACTOR_FOR_DOC = "AutoImageProcessor" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/resnet-50" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" |
|
|
|
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"microsoft/resnet-50", |
|
|
|
] |
|
|
|
|
|
class ResNetConvLayer(nn.Module): |
|
def __init__( |
|
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu" |
|
): |
|
super().__init__() |
|
self.convolution = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False |
|
) |
|
self.normalization = nn.BatchNorm2d(out_channels) |
|
self.activation = ACT2FN[activation] if activation is not None else nn.Identity() |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
hidden_state = self.convolution(input) |
|
hidden_state = self.normalization(hidden_state) |
|
hidden_state = self.activation(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class ResNetEmbeddings(nn.Module): |
|
""" |
|
ResNet Embeddings (stem) composed of a single aggressive convolution. |
|
""" |
|
|
|
def __init__(self, config: ResNetConfig): |
|
super().__init__() |
|
self.embedder = ResNetConvLayer( |
|
config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act |
|
) |
|
self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.num_channels = config.num_channels |
|
|
|
def forward(self, pixel_values: Tensor) -> Tensor: |
|
num_channels = pixel_values.shape[1] |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
embedding = self.embedder(pixel_values) |
|
embedding = self.pooler(embedding) |
|
return embedding |
|
|
|
|
|
class ResNetShortCut(nn.Module): |
|
""" |
|
ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to |
|
downsample the input using `stride=2`. |
|
""" |
|
|
|
def __init__(self, in_channels: int, out_channels: int, stride: int = 2): |
|
super().__init__() |
|
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) |
|
self.normalization = nn.BatchNorm2d(out_channels) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
hidden_state = self.convolution(input) |
|
hidden_state = self.normalization(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class ResNetBasicLayer(nn.Module): |
|
""" |
|
A classic ResNet's residual layer composed by two `3x3` convolutions. |
|
""" |
|
|
|
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"): |
|
super().__init__() |
|
should_apply_shortcut = in_channels != out_channels or stride != 1 |
|
self.shortcut = ( |
|
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() |
|
) |
|
self.layer = nn.Sequential( |
|
ResNetConvLayer(in_channels, out_channels, stride=stride), |
|
ResNetConvLayer(out_channels, out_channels, activation=None), |
|
) |
|
self.activation = ACT2FN[activation] |
|
|
|
def forward(self, hidden_state): |
|
residual = hidden_state |
|
hidden_state = self.layer(hidden_state) |
|
residual = self.shortcut(residual) |
|
hidden_state += residual |
|
hidden_state = self.activation(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class ResNetBottleNeckLayer(nn.Module): |
|
""" |
|
A classic ResNet's bottleneck layer composed by three `3x3` convolutions. |
|
|
|
The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3` |
|
convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", reduction: int = 4 |
|
): |
|
super().__init__() |
|
should_apply_shortcut = in_channels != out_channels or stride != 1 |
|
reduces_channels = out_channels // reduction |
|
self.shortcut = ( |
|
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() |
|
) |
|
self.layer = nn.Sequential( |
|
ResNetConvLayer(in_channels, reduces_channels, kernel_size=1), |
|
ResNetConvLayer(reduces_channels, reduces_channels, stride=stride), |
|
ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None), |
|
) |
|
self.activation = ACT2FN[activation] |
|
|
|
def forward(self, hidden_state): |
|
residual = hidden_state |
|
hidden_state = self.layer(hidden_state) |
|
residual = self.shortcut(residual) |
|
hidden_state += residual |
|
hidden_state = self.activation(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class ResNetStage(nn.Module): |
|
""" |
|
A ResNet stage composed by stacked layers. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: ResNetConfig, |
|
in_channels: int, |
|
out_channels: int, |
|
stride: int = 2, |
|
depth: int = 2, |
|
): |
|
super().__init__() |
|
|
|
layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer |
|
|
|
self.layers = nn.Sequential( |
|
|
|
layer(in_channels, out_channels, stride=stride, activation=config.hidden_act), |
|
*[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)], |
|
) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
hidden_state = input |
|
for layer in self.layers: |
|
hidden_state = layer(hidden_state) |
|
hidden_state = hidden_state + 1 |
|
print("having fun in my custom code") |
|
return hidden_state |
|
|
|
|
|
class ResNetEncoder(nn.Module): |
|
def __init__(self, config: ResNetConfig): |
|
super().__init__() |
|
self.stages = nn.ModuleList([]) |
|
|
|
self.stages.append( |
|
ResNetStage( |
|
config, |
|
config.embedding_size, |
|
config.hidden_sizes[0], |
|
stride=2 if config.downsample_in_first_stage else 1, |
|
depth=config.depths[0], |
|
) |
|
) |
|
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) |
|
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): |
|
self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth)) |
|
|
|
def forward( |
|
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True |
|
) -> BaseModelOutputWithNoAttention: |
|
hidden_states = () if output_hidden_states else None |
|
|
|
for stage_module in self.stages: |
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
hidden_state = stage_module(hidden_state) |
|
|
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_state, hidden_states] if v is not None) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=hidden_state, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
|
|
class ResNetPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ResNetConfig |
|
base_model_prefix = "resnet" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Conv2d): |
|
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(module.weight, 1) |
|
nn.init.constant_(module.bias, 0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ResNetEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
RESNET_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
RESNET_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`AutoImageProcessor.__call__`] for details. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ResNet model outputting raw features without any specific head on top.", |
|
RESNET_START_DOCSTRING, |
|
) |
|
class ResNetModel(ResNetPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.embedder = ResNetEmbeddings(config) |
|
self.encoder = ResNetEncoder(config) |
|
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class=_FEAT_EXTRACTOR_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None |
|
) -> BaseModelOutputWithPoolingAndNoAttention: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
embedding_output = self.embedder(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
|
|
pooled_output = self.pooler(last_hidden_state) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndNoAttention( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for |
|
ImageNet. |
|
""", |
|
RESNET_START_DOCSTRING, |
|
) |
|
class ResNetCustomForImageClassification(ResNetPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.resnet = ResNetModel(config) |
|
|
|
self.classifier = nn.Sequential( |
|
nn.Flatten(), |
|
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), |
|
) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class=_FEAT_EXTRACTOR_FOR_DOC, |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=ImageClassifierOutputWithNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> ImageClassifierOutputWithNoAttention: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
|
|
pooled_output = outputs.pooler_output if return_dict else outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ResNet backbone, to be used with frameworks like DETR and MaskFormer. |
|
""", |
|
RESNET_START_DOCSTRING, |
|
) |
|
class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.stage_names = config.stage_names |
|
self.embedder = ResNetEmbeddings(config) |
|
self.encoder = ResNetEncoder(config) |
|
|
|
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]] |
|
|
|
out_feature_channels = {} |
|
out_feature_channels["stem"] = config.embedding_size |
|
for idx, stage in enumerate(self.stage_names[1:]): |
|
out_feature_channels[stage] = config.hidden_sizes[idx] |
|
|
|
self.out_feature_channels = out_feature_channels |
|
|
|
|
|
self.post_init() |
|
|
|
@property |
|
def channels(self): |
|
return [self.out_feature_channels[name] for name in self.out_features] |
|
|
|
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None |
|
) -> BackboneOutput: |
|
""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, AutoBackbone |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") |
|
>>> model = AutoBackbone.from_pretrained( |
|
... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] |
|
... ) |
|
|
|
>>> inputs = processor(image, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> feature_maps = outputs.feature_maps |
|
>>> list(feature_maps[-1].shape) |
|
[1, 2048, 7, 7] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
embedding_output = self.embedder(pixel_values) |
|
|
|
outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
feature_maps = () |
|
for idx, stage in enumerate(self.stage_names): |
|
if stage in self.out_features: |
|
feature_maps += (hidden_states[idx],) |
|
|
|
if not return_dict: |
|
output = (feature_maps,) |
|
if output_hidden_states: |
|
output += (outputs.hidden_states,) |
|
return output |
|
|
|
return BackboneOutput( |
|
feature_maps=feature_maps, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=None, |
|
) |
|
|
|
|