--- language: - en license: apache-2.0 base_model: futureProofGlitch/whisper-small-v2 tags: - generated_from_trainer datasets: - futureProofGlitch/Lectures-test-V1 metrics: - wer model-index: - name: FutureProofGlitch - Whisper Small - Fine Tuned on Lectures results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: TBK's Treasured Lectures type: futureProofGlitch/Lectures-test-V1 metrics: - name: Wer type: wer value: 0.056233149313133904 --- # FutureProofGlitch - Whisper Small - Fine Tuned on Lectures This model is a fine-tuned version of [futureProofGlitch/whisper-small-v2](https://huggingface.co./futureProofGlitch/whisper-small-v2) on the TBK's Treasured Lectures dataset. It achieves the following results on the evaluation set: - Loss: 0.3574 - Wer Ortho: 0.1834 - Wer: 0.0562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | No log | 0.21 | 25 | 0.8342 | 0.2377 | 0.0939 | | 3.0694 | 0.42 | 50 | 0.4413 | 0.2100 | 0.0651 | | 3.0694 | 0.64 | 75 | 0.3754 | 0.1859 | 0.0557 | | 0.3126 | 0.85 | 100 | 0.3574 | 0.1834 | 0.0562 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2