--- language: - en tags: - fusion-bench base_model: meta-llama/Llama-3.2-1B-Instruct pipeline_tag: text-classification library_name: transformers datasets: - hendrydong/preference_700K --- # Model Overview This model has been fine-tuned on the hendrydong/preference_700K dataset for 2 epochs, using the Llama-3.2-1B-Instruct model as the base. See [config](./hydra_output_2024-12-01_00-02-51/.hydra/config.yaml) for more details about the training hyperparameters. ![alt text](tb_logs.png) Fine-tuning was done using the [fusion-bench](https://github.com/tanganke/fusion_bench): ```bash fusion_bench --config-name llama_full_finetune \ fabric.loggers.name=llama_full_bradley_terry_rm \ method=lm_finetune/bradley_terry_rm \ method.dataloader_kwargs.batch_size=8 \ method.accumulate_grad_batches=16 \ method.lr_scheduler.min_lr=1e-7 \ method.lr_scheduler.max_lr=5e-6 \ method.lr_scheduler.warmup_steps=100 \ method.optimizer.lr=0 \ method.optimizer.weight_decay=0.001 \ method.gradient_clip_val=1 \ method.max_epochs=2 \ method.checkpoint_save_interval=epoch \ method.checkpoint_save_frequency=1 \ modelpool=SeqenceClassificationModelPool/llama_preference700k ``` 8 GPUs, per-GPU batch size is 8, with gradient accumulation of 16 steps, so the effective batch size is 1024.