Model save
Browse files- README.md +82 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: ner-gec-roberta-large-v4
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# ner-gec-roberta-large-v4
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2491
|
24 |
+
- Precision: 0.6427
|
25 |
+
- Recall: 0.5771
|
26 |
+
- F1: 0.6081
|
27 |
+
- Accuracy: 0.9614
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
|
58 |
+
| 0.2536 | 0.58 | 500 | 0.9347 | 0.0376 | 0.2469 | 0.0814 | 0.0245 |
|
59 |
+
| 0.2316 | 1.15 | 1000 | 0.9359 | 0.1365 | 0.2339 | 0.2272 | 0.0975 |
|
60 |
+
| 0.2175 | 1.73 | 1500 | 0.9392 | 0.1823 | 0.2172 | 0.2842 | 0.1342 |
|
61 |
+
| 0.1757 | 2.3 | 2000 | 0.9438 | 0.3123 | 0.1979 | 0.4011 | 0.2556 |
|
62 |
+
| 0.1682 | 2.88 | 2500 | 0.9502 | 0.3911 | 0.1817 | 0.4787 | 0.3307 |
|
63 |
+
| 0.121 | 3.46 | 3000 | 0.9537 | 0.4504 | 0.1753 | 0.5310 | 0.3910 |
|
64 |
+
| 0.0982 | 4.03 | 3500 | 0.9556 | 0.4980 | 0.1807 | 0.5606 | 0.4480 |
|
65 |
+
| 0.0858 | 4.61 | 4000 | 0.9577 | 0.5304 | 0.1732 | 0.5867 | 0.4839 |
|
66 |
+
| 0.0563 | 5.18 | 4500 | 0.1839 | 0.6007 | 0.5155 | 0.5548 | 0.9585 |
|
67 |
+
| 0.0586 | 5.76 | 5000 | 0.1804 | 0.6231 | 0.5237 | 0.5691 | 0.9605 |
|
68 |
+
| 0.0404 | 6.34 | 5500 | 0.1948 | 0.6214 | 0.5423 | 0.5792 | 0.9599 |
|
69 |
+
| 0.0397 | 6.91 | 6000 | 0.1994 | 0.6309 | 0.5458 | 0.5852 | 0.9610 |
|
70 |
+
| 0.0281 | 7.49 | 6500 | 0.2131 | 0.6345 | 0.5568 | 0.5931 | 0.9610 |
|
71 |
+
| 0.0182 | 8.06 | 7000 | 0.2249 | 0.6507 | 0.5649 | 0.6047 | 0.9625 |
|
72 |
+
| 0.0188 | 8.64 | 7500 | 0.2322 | 0.6413 | 0.5782 | 0.6081 | 0.9612 |
|
73 |
+
| 0.0123 | 9.22 | 8000 | 0.2473 | 0.6506 | 0.5777 | 0.6120 | 0.9622 |
|
74 |
+
| 0.0123 | 9.79 | 8500 | 0.2491 | 0.6427 | 0.5771 | 0.6081 | 0.9614 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.36.2
|
80 |
+
- Pytorch 2.1.0+cu118
|
81 |
+
- Datasets 2.16.1
|
82 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1417304984
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3972237331226177575fbf19ff8d3fc1854de981a5e2ecc4a3253184f615112f
|
3 |
size 1417304984
|