--- license: mit license_link: https://huggingface.co./microsoft/Phi-3-vision-128k-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code - vision widget: - messages: - role: user content: <|image_1|>\nWhat action should the robot take to {lang}? --- ## TraceVLA-Phi3V ``TraceVLA-Phi3V`` model is a vision-language-action model obtained by finetuning the base OpenVLA-Phi3V Model on the Open X-Embodiment robot mixture dataset with [visual trace prompting](https://arxiv.org/pdf/2412.10345) technique. ### Results on SimplerEnv Fractal + SimplerEnv: #### Fractal: | Policy/Settings | Pick up Coke | Move near | Open/Close Drawer | Put in Drawer | Average | |:------:|:------------:|:---------:|:------------:|:-----------:|:-------:| | (Visual Matching) OpenVLA-Phi3V | **56.7%** | 53.3% | **38.4%** | **15.7%** | **41.0%** | | (Visual Matching) TraceVLA-Phi3V | **69.7%** | **70.8%** | **35.4%** | 0.% | **44.0%** | | (Variant Aggregation) OpenVLA-Phi3V | 55.4% | **57.7%** | 19.3% | **10.6%** | 35.8% | | (Variant Aggregation) TraceVLA-Phi3V | **75.4%** | **67.8%** | **37.5%** | 0.0% | **45.1%** | #### Bridge: | Policy/Settings | Put Spoon | Put Carrot | Stack Block | Put Eggplant | Average | |:------:|:------------:|:---------:|:------------:|:-----------:|:-------:| | OpenVLA-Phi3V | **12.5%** | 0% | 0% | 8.3% | 5.2% | | TraceVLA-Phi3V | 8.3% | 0% | **12.5%** | **66.7%** | **21.9%** | ### Sample Inference Code Here is the sample inference code of OpenVLA-Phi3V. ``` # Load Processor & VLA from transformers import AutoModelForCausalLM , AutoProcessor from PIL import Image import json processor = AutoProcessor.from_pretrained( model_path, trust_remote_code=True, num_crops=1 ) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, trust_remote_code=True, _attn_implementation='flash_attention_2', use_cache=False ).cuda() # Load Visual Trace Processor from prismatic.eval import TraceProcessor trace_processor = TraceProcessor(cotracker_model_path) # Load dataset statistics dataset_stats_dir = os.path.join(model_path, 'dataset_statistics.json') with open(dataset_stats_dir, 'r') as file: action_norm_stats = json.load(file)[dataset_name]['action'] model.prepare_action_inference(action_norm_stats, processor.tokenizer.vocab_size) lang: str = None # Task language instruction ### IMPORTANT: Make sure image is of size (336,336) image: PIL.Image = None # Image observation # Get visual trace overlaid image observation image = resize_image(image, (256,256)) ### 256x256 is the resolution of Co-Tracker Input Resolution image_overlaid, has_trace = self.trace_processors[i].process_image(image) image_overlaid = resize_image(image_overlaid, (336,336)) ### 336x336 is the resolution of Phi3V image encoder. # Prepare TraceVLA prompt format if not has_trace: prompt_message = { 'role': 'user', 'content': f'<|image_1|><|image_2|>\nWhat action should the robot take to {task_description}?', } else: prompt_message = { 'role': 'user', 'content': f'You are given two images: one with the original robot observation <|image_1|>, and another one marked with historial traces of the robot end effector and moving objects <|image_2|>.\nWhat action should the robot take to {task_description}?', } prompt = processor.tokenizer.apply_chat_template( [prompt_message], tokenize=False, add_generation_prompt=True ) inputs = processor(prompt, [image, image_overlaid]).to("cuda:0", dtype=torch.bfloat16) # Get the action output from model model.predict_action(**inputs) ``` For more examples, including scripts for finetuning OpenVLA-Phi3V models on your own robot demonstration datasets, check out our [repository](https://github.com/FrankZheng2022/tracevla/tree/phi3). ### Citation If you find our code or models useful in your work, please cite [our paper](https://arxiv.org/abs/2412.10345): ```bibtex @misc{zheng2024tracevlavisualtraceprompting, title={TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies}, author={Ruijie Zheng and Yongyuan Liang and Shuaiyi Huang and Jianfeng Gao and Hal Daumé III and Andrey Kolobov and Furong Huang and Jianwei Yang}, year={2024}, eprint={2412.10345}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2412.10345}, } ```