tracevla_phi3v / image_embedding_phi3_v.py
FrankZheng2022
update
2dd8c89
import warnings
import torch
from torch import nn
from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
from transformers.models.clip.modeling_clip import CLIPAttention
from transformers.utils import logging
try:
from flash_attn import flash_attn_func
except ImportError:
pass
logger = logging.get_logger(__name__)
MAX_INPUT_ID = int(1e9)
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
attention_dropout=0.0,
dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=336,
initializer_factor=1.0,
initializer_range=0.02,
intermediate_size=4096,
layer_norm_eps=1e-05,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=768
)
class CLIPAttentionFA2(CLIPAttention):
"""Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
def forward(self,
hidden_states,
attention_mask=None,
causal_attention_mask=None,
output_attentions=False):
"""Input shape: Batch x Time x Channel"""
assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
bsz, tgt_len, embed_dim = hidden_states.size()
query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout_p=self.dropout if self.training else 0.0,
softmax_scale=self.scale,
causal=False,
).reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None
class Phi3ImageEmbedding(nn.Module):
"""Phi3 Image embedding with support for batched multi-image input."""
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
super().__init__()
# n_embed or hidden_size
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
self.drop = nn.Dropout(embd_drop)
else:
self.drop = None
self.wte = wte
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
self.img_processor = CLIPVisionModel(clip_config)
image_dim_out = config.img_processor['image_dim_out']
self.num_img_tokens = config.img_processor['num_img_tokens']
# FA2 in CLIP
if config._attn_implementation == 'flash_attention_2':
for layer in self.img_processor.vision_model.encoder.layers:
clip_fa2 = CLIPAttentionFA2(clip_config)
del layer.self_attn
layer.self_attn = clip_fa2
else:
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
self.image_dim_out = image_dim_out
self.img_sizes = None
# global_gn and sub_gn for hd transform, serves as line separator
self.use_hd_transform = kwargs.get('use_hd_transform', False)
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
if self.with_learnable_separator:
assert self.use_hd_transform, 'learnable separator is only for hd transform'
# 1024 * 4, merge spatial to channel dimension
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
projection_cls = kwargs.get('projection_cls', 'linear')
if projection_cls == 'linear':
self.img_projection = nn.Linear(image_dim_out, hidden_size)
elif projection_cls == 'mlp' and self.use_hd_transform:
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
elif projection_cls == 'mlp':
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
else:
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
self.vocab_size = config.vocab_size
self.img_features = None
if isinstance(config.img_processor, dict):
self.layer_idx = config.img_processor.get('layer_idx', -2)
self.type_feature = config.img_processor.get('type_feature', 'patch')
else:
self.layer_idx = -2
self.type_feature = 'patch'
def set_img_features(self, img_features: torch.FloatTensor) -> None:
self.img_features = img_features
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
self.img_sizes = img_sizes
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
"""
img_embeds: (N, 3, 336, 336)
Returns: (N, L, C) where L=24*24=576 and C=1024
"""
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
if TYPE_FEATURE == "patch":
patch_feature = img_feature[:, 1:]
return patch_feature
raise NotImplementedError
def forward(
self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
) -> torch.FloatTensor:
"""
pixel_values: (batch_size, num_images, num_crops+1, 3, 336, 336)
image_sizes: (batch_size, num_images, 2)
"""
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
# positions for image tokens
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
has_image = len(positions[0].tolist()) > 0
# clamp input_ids
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
warnings.warn(
"Phi-3-V modifies `input_ids` in-place and the tokens indicating images will be "
"removed after model forward. If your workflow requires multiple forward passes on "
"the same `input_ids`, please make a copy of `input_ids` before passing it to the "
"model."
)
hidden_states = self.wte(input_ids)
if has_image:
assert self.use_hd_transform, "Image insertion requires HD transform enabled."
b, n, m, c, h, w = pixel_values.shape # b= batch_size, n= num_images, m= num_crops+1
assert c == 3 and h == w == 336
# Flatten batch and image dimension for feature extraction
pixel_values_flat = pixel_values.reshape(b * n * m, c, h, w)
img_features = self.get_img_features(pixel_values_flat) # (b*n*m, 576, 1024)
img_features = img_features.reshape(b * n, m, 576, self.image_dim_out)
# Flatten image_sizes as well
image_sizes_flat = image_sizes.reshape(b * n, 2)
image_features_proj = self.hd_feature_transform(img_features, image_sizes_flat)
hidden_states = hidden_states.index_put(
positions, image_features_proj, accumulate=False
)
if self.drop is not None:
hidden_states = self.drop(hidden_states)
return hidden_states
def hd_feature_transform(self, image_features, image_sizes):
"""
HD transform over multiple images.
image_features: (N, m, 576, 1024)
N = b*n (total number of images in the batch)
m = num_crops+1
The first crop is global, the remaining are sub-crops.
image_sizes: (N, 2)
image_sizes[i] = (height, width) for the i-th image.
Returns:
image_features_proj: Concatenated image embeddings projected to hidden size.
"""
assert self.hd_transform_order == 'sub_glb', f'hd_transform_order `{self.hd_transform_order}` not implemented'
if isinstance(self.img_projection, nn.Sequential):
target_device = self.img_projection[0].bias.device
target_dtype = self.img_projection[0].bias.dtype
else: # single nn.Linear layer
target_device = self.img_projection.bias.device
target_dtype = self.img_projection.bias.dtype
N, m, L, C = image_features.shape # L=576=24*24, C=1024
num_crops = m - 1
# global_image_features: (N, 576, 1024)
global_image_features = image_features[:, 0]
# process global features into HD format
global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
all_image_embeddings = []
for i in range(N):
h, w = image_sizes[i]
h_crop = h // 336
w_crop = w // 336
sub_image_features = image_features[i, 1:1 + num_crops] # (num_crops, 576, 1024)
sub_image_features_hd = self.reshape_hd_patches_2x2merge(sub_image_features, h_crop, w_crop)
sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
# [sub features, separator, global features]
all_image_embeddings.extend([
sub_image_features_hd_newline.squeeze(0),
self.glb_GN.squeeze(0),
global_image_features_hd_newline[i],
])
image_features_proj = self.img_projection(
torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
)
return image_features_proj
def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
"""
image_features: (N, L, C) or (N, 24*24, 1024)
Reshape into HD patches:
output: (N_img, h_crop*12, w_crop*12, 4096)
"""
N, L, C = image_features.shape
assert L == 24 * 24 and C == 1024
H = int(L**0.5)
num_images = N // (h_crop * w_crop) if N != 1 else 1
image_features_hd = (
image_features.reshape(N, H, H, C) # N, 24, 24, 1024
.reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
.permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
.reshape(N, -1, 4 * C) # N, 144, 4096
)
# Now group them by images if N = num_images * num_crops:
# shape: (num_images, h_crop, w_crop, 12, 12, 4096)
image_features_hd = image_features_hd.reshape(num_images, h_crop, w_crop, H // 2, H // 2, 4 * C)
# rearrange to (num_images, h_crop*12, w_crop*12, 4096)
image_features_hd = image_features_hd.permute(0, 1, 3, 2, 4, 5).reshape(
num_images, h_crop * (H // 2), w_crop * (H // 2), 4 * C
)
return image_features_hd
def add_image_newline(self, image_features_hd):
"""
image_features_hd: (num_images, h, w, 4096)
Add newline token: (num_images, h*(w+1), 4096)
"""
num_images, h, w, hid_dim = image_features_hd.shape
newline_embeddings = self.sub_GN.expand(num_images, h, 1, hid_dim)
image_features_hd_newline = torch.cat(
[image_features_hd, newline_embeddings], dim=2
).reshape(num_images, -1, hid_dim)
return image_features_hd_newline