游雁 commited on
Commit
cee38ea
·
1 Parent(s): 5c2da43
Files changed (6) hide show
  1. README.md +293 -3
  2. am.mvn +8 -0
  3. config.yaml +56 -0
  4. configuration.json +13 -0
  5. fig/struct.png +0 -0
  6. model.pt +3 -0
README.md CHANGED
@@ -1,5 +1,295 @@
1
  ---
2
- license: other
3
- license_name: model-license
4
- license_link: https://github.com/alibaba-damo-academy/FunASR/blob/main
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tasks:
3
+ - voice-activity-detection
4
+ domain:
5
+ - audio
6
+ model-type:
7
+ - VAD model
8
+ frameworks:
9
+ - pytorch
10
+ backbone:
11
+ - fsmn
12
+ metrics:
13
+ - f1_score
14
+ license: Apache License 2.0
15
+ language:
16
+ - cn
17
+ tags:
18
+ - FunASR
19
+ - FSMN
20
+ - Alibaba
21
+ - Online
22
+ datasets:
23
+ train:
24
+ - 20,000 hour industrial Mandarin task
25
+ test:
26
+ - 20,000 hour industrial Mandarin task
27
+ widgets:
28
+ - task: voice-activity-detection
29
+ inputs:
30
+ - type: audio
31
+ name: input
32
+ title: 音频
33
+ examples:
34
+ - name: 1
35
+ title: 示例1
36
+ inputs:
37
+ - name: input
38
+ data: git://example/vad_example.wav
39
+ inferencespec:
40
+ cpu: 1 #CPU数量
41
+ memory: 4096
42
  ---
43
+
44
+ # FSMN-Monophone VAD 模型介绍
45
+
46
+ [//]: # (FSMN-Monophone VAD 模型)
47
+
48
+ ## Highlight
49
+ - 16k中文通用VAD模型:可用于检测长语音片段中有效语音的起止时间点。
50
+ - 基于[Paraformer-large长音频模型](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)场景的使用
51
+ - 基于[FunASR框架](https://github.com/alibaba-damo-academy/FunASR),可进行ASR,VAD,[中文标点](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary)的自由组合
52
+ - 基于音频数据的有效语音片段起止时间点检测
53
+
54
+ ## <strong>[FunASR开源项目介绍](https://github.com/alibaba-damo-academy/FunASR)</strong>
55
+ <strong>[FunASR](https://github.com/alibaba-damo-academy/FunASR)</strong>希望在语音识别的学术研究和工业应用之间架起一座桥梁。通过发布工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并推动语音识别生态的发展。让语音识别更有趣!
56
+
57
+ [**github仓库**](https://github.com/alibaba-damo-academy/FunASR)
58
+ | [**最新动态**](https://github.com/alibaba-damo-academy/FunASR#whats-new)
59
+ | [**环境安装**](https://github.com/alibaba-damo-academy/FunASR#installation)
60
+ | [**服务部署**](https://www.funasr.com)
61
+ | [**模型库**](https://github.com/alibaba-damo-academy/FunASR/tree/main/model_zoo)
62
+ | [**联系我们**](https://github.com/alibaba-damo-academy/FunASR#contact)
63
+
64
+
65
+ ## 模型原理介绍
66
+
67
+ FSMN-Monophone VAD是达摩院语音团队提出的高效语音端点检测模型,用于检测输入音频中有效语音的起止时间点信息,并将检测出来的有效音频片段输入识别引擎进行识别,减少无效语音带来的识别错误。
68
+
69
+ <p align="center">
70
+ <img src="fig/struct.png" alt="VAD模型结构" width="500" />
71
+
72
+ FSMN-Monophone VAD模型结构如上图所示:模型结构层面,FSMN模型结构建模时可考虑上下文信息,训练和推理速度快,且时延可控;同时根据VAD模型size以及低时延的要求,对FSMN的网络结构、右看帧数进行了适配。在建模单元层面,speech信息比较丰富,仅用单类来表征学习能力有限,我们将单一speech类升级为Monophone。建模单元细分,可以避免参数平均,抽象学习能力增强,区分性更好。
73
+
74
+ ## 基于ModelScope进行推理
75
+
76
+ - 推理支持音频格式如下:
77
+ - wav文件路径,例如:data/test/audios/vad_example.wav
78
+ - wav文件url,例如:https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav
79
+ - wav二进制数据,格式bytes,例如:用户直接从文件里读出bytes数据或者是麦克风录出bytes数据。
80
+ - 已解析的audio音频,例如:audio, rate = soundfile.read("vad_example_zh.wav"),类型为numpy.ndarray或者torch.Tensor。
81
+ - wav.scp文件,需符合如下要求:
82
+
83
+ ```sh
84
+ cat wav.scp
85
+ vad_example1 data/test/audios/vad_example1.wav
86
+ vad_example2 data/test/audios/vad_example2.wav
87
+ ...
88
+ ```
89
+
90
+ - 若输入格式wav文件url,api调用方式可参考如下范例:
91
+
92
+ ```python
93
+ from modelscope.pipelines import pipeline
94
+ from modelscope.utils.constant import Tasks
95
+
96
+ inference_pipeline = pipeline(
97
+ task=Tasks.voice_activity_detection,
98
+ model='iic/speech_fsmn_vad_zh-cn-16k-common-pytorch',
99
+ model_revision="v2.0.4",
100
+ )
101
+
102
+ segments_result = inference_pipeline(input='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
103
+ print(segments_result)
104
+ ```
105
+
106
+ - 输入音频为pcm格式,调用api时需要传入音频采样率参数fs,例如:
107
+
108
+ ```python
109
+ segments_result = inference_pipeline(input='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.pcm', fs=16000)
110
+ ```
111
+
112
+ - 若输入格式为文件wav.scp(注:文件名需要以.scp结尾),可添加 output_dir 参数将识别结果写入文件中,参考示例如下:
113
+
114
+ ```python
115
+ inference_pipeline(input="wav.scp", output_dir='./output_dir')
116
+ ```
117
+ 识别结果输出路径结构如下:
118
+
119
+ ```sh
120
+ tree output_dir/
121
+ output_dir/
122
+ └── 1best_recog
123
+ └── text
124
+
125
+ 1 directory, 1 files
126
+ ```
127
+ text:VAD检测语音起止时间点结果文件(单位:ms)
128
+
129
+ - 若输入音频为已解析的audio音频,api调用方式可参考如下范例:
130
+
131
+ ```python
132
+ import soundfile
133
+
134
+ waveform, sample_rate = soundfile.read("vad_example_zh.wav")
135
+ segments_result = inference_pipeline(input=waveform)
136
+ print(segments_result)
137
+ ```
138
+
139
+ - VAD常用参数调整说明(参考:vad.yaml文件):
140
+ - max_end_silence_time:尾部连续检测到多长时间静音进行尾点判停,参数范围500ms~6000ms,默认值800ms(该值过低容易出现语音提前截断的情况)。
141
+ - speech_noise_thres:speech的得分减去noise的得分大于此值则判断为speech,参数范围:(-1,1)
142
+ - 取值越趋于-1,噪音被误判定为语音的概率越大,FA越高
143
+ - 取值越趋于+1,语音被误判定为噪音的概率越大,Pmiss越高
144
+ - 通常情况下,该值会根据当前模型在长语音测试集上的效果取balance
145
+
146
+
147
+
148
+
149
+ ## 基于FunASR进行推理
150
+
151
+ 下面为快速上手教程,测试音频([中文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav),[英文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav))
152
+
153
+ ### 可执行命令行
154
+ 在命令行终端执行:
155
+
156
+ ```shell
157
+ funasr ++model=paraformer-zh ++vad_model="fsmn-vad" ++punc_model="ct-punc" ++input=vad_example.wav
158
+ ```
159
+
160
+ 注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp:`wav_id wav_path`
161
+
162
+ ### python示例
163
+ #### 非实时语音识别
164
+ ```python
165
+ from funasr import AutoModel
166
+ # paraformer-zh is a multi-functional asr model
167
+ # use vad, punc, spk or not as you need
168
+ model = AutoModel(model="paraformer-zh", model_revision="v2.0.4",
169
+ vad_model="fsmn-vad", vad_model_revision="v2.0.4",
170
+ punc_model="ct-punc-c", punc_model_revision="v2.0.4",
171
+ # spk_model="cam++", spk_model_revision="v2.0.2",
172
+ )
173
+ res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
174
+ batch_size_s=300,
175
+ hotword='魔搭')
176
+ print(res)
177
+ ```
178
+ 注:`model_hub`:表示模型仓库,`ms`为选择modelscope下载,`hf`为选择huggingface下载。
179
+
180
+ #### 实时语音识别
181
+
182
+ ```python
183
+ from funasr import AutoModel
184
+
185
+ chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
186
+ encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
187
+ decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention
188
+
189
+ model = AutoModel(model="paraformer-zh-streaming", model_revision="v2.0.4")
190
+
191
+ import soundfile
192
+ import os
193
+
194
+ wav_file = os.path.join(model.model_path, "example/asr_example.wav")
195
+ speech, sample_rate = soundfile.read(wav_file)
196
+ chunk_stride = chunk_size[1] * 960 # 600ms
197
+
198
+ cache = {}
199
+ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
200
+ for i in range(total_chunk_num):
201
+ speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
202
+ is_final = i == total_chunk_num - 1
203
+ res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
204
+ print(res)
205
+ ```
206
+
207
+ 注:`chunk_size`为流式延时配置,`[0,10,5]`表示上屏实时出字粒度为`10*60=600ms`,未来信息为`5*60=300ms`。每次推理输入为`600ms`(采样点数为`16000*0.6=960`),输出为对应文字,最后一个语音片段输入需要设置`is_final=True`来强制输出最后一个字。
208
+
209
+ #### 语音端点检测(非实时)
210
+ ```python
211
+ from funasr import AutoModel
212
+
213
+ model = AutoModel(model="fsmn-vad", model_revision="v2.0.4")
214
+
215
+ wav_file = f"{model.model_path}/example/asr_example.wav"
216
+ res = model.generate(input=wav_file)
217
+ print(res)
218
+ ```
219
+
220
+ #### 语音端点检测(实时)
221
+ ```python
222
+ from funasr import AutoModel
223
+
224
+ chunk_size = 200 # ms
225
+ model = AutoModel(model="fsmn-vad", model_revision="v2.0.4")
226
+
227
+ import soundfile
228
+
229
+ wav_file = f"{model.model_path}/example/vad_example.wav"
230
+ speech, sample_rate = soundfile.read(wav_file)
231
+ chunk_stride = int(chunk_size * sample_rate / 1000)
232
+
233
+ cache = {}
234
+ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
235
+ for i in range(total_chunk_num):
236
+ speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
237
+ is_final = i == total_chunk_num - 1
238
+ res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
239
+ if len(res[0]["value"]):
240
+ print(res)
241
+ ```
242
+
243
+ #### 标点恢复
244
+ ```python
245
+ from funasr import AutoModel
246
+
247
+ model = AutoModel(model="ct-punc", model_revision="v2.0.4")
248
+
249
+ res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
250
+ print(res)
251
+ ```
252
+
253
+ #### 时间戳预测
254
+ ```python
255
+ from funasr import AutoModel
256
+
257
+ model = AutoModel(model="fa-zh", model_revision="v2.0.4")
258
+
259
+ wav_file = f"{model.model_path}/example/asr_example.wav"
260
+ text_file = f"{model.model_path}/example/text.txt"
261
+ res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
262
+ print(res)
263
+ ```
264
+
265
+ 更多详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining))
266
+
267
+
268
+ ## 微调
269
+
270
+ 详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining))
271
+
272
+
273
+
274
+
275
+
276
+ ## 使用方式以及适用范围
277
+
278
+ 运行范围
279
+ - 支持Linux-x86_64、Mac和Windows运行。
280
+
281
+ 使用方式
282
+ - 直接推理:可以直接对长语音数据进行计算,有效语音片段的起止时间点信息(单位:ms)。
283
+
284
+ ## 相关论文以及引用信息
285
+
286
+ ```BibTeX
287
+ @inproceedings{zhang2018deep,
288
+ title={Deep-FSMN for large vocabulary continuous speech recognition},
289
+ author={Zhang, Shiliang and Lei, Ming and Yan, Zhijie and Dai, Lirong},
290
+ booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
291
+ pages={5869--5873},
292
+ year={2018},
293
+ organization={IEEE}
294
+ }
295
+ ```
am.mvn ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <Nnet>
2
+ <Splice> 400 400
3
+ [ 0 ]
4
+ <AddShift> 400 400
5
+ <LearnRateCoef> 0 [ -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 ]
6
+ <Rescale> 400 400
7
+ <LearnRateCoef> 0 [ 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 ]
8
+ </Nnet>
config.yaml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ frontend: WavFrontendOnline
2
+ frontend_conf:
3
+ fs: 16000
4
+ window: hamming
5
+ n_mels: 80
6
+ frame_length: 25
7
+ frame_shift: 10
8
+ dither: 0.0
9
+ lfr_m: 5
10
+ lfr_n: 1
11
+
12
+ model: FsmnVADStreaming
13
+ model_conf:
14
+ sample_rate: 16000
15
+ detect_mode: 1
16
+ snr_mode: 0
17
+ max_end_silence_time: 800
18
+ max_start_silence_time: 3000
19
+ do_start_point_detection: True
20
+ do_end_point_detection: True
21
+ window_size_ms: 200
22
+ sil_to_speech_time_thres: 150
23
+ speech_to_sil_time_thres: 150
24
+ speech_2_noise_ratio: 1.0
25
+ do_extend: 1
26
+ lookback_time_start_point: 200
27
+ lookahead_time_end_point: 100
28
+ max_single_segment_time: 60000
29
+ snr_thres: -100.0
30
+ noise_frame_num_used_for_snr: 100
31
+ decibel_thres: -100.0
32
+ speech_noise_thres: 0.6
33
+ fe_prior_thres: 0.0001
34
+ silence_pdf_num: 1
35
+ sil_pdf_ids: [0]
36
+ speech_noise_thresh_low: -0.1
37
+ speech_noise_thresh_high: 0.3
38
+ output_frame_probs: False
39
+ frame_in_ms: 10
40
+ frame_length_ms: 25
41
+
42
+ encoder: FSMN
43
+ encoder_conf:
44
+ input_dim: 400
45
+ input_affine_dim: 140
46
+ fsmn_layers: 4
47
+ linear_dim: 250
48
+ proj_dim: 128
49
+ lorder: 20
50
+ rorder: 0
51
+ lstride: 1
52
+ rstride: 0
53
+ output_affine_dim: 140
54
+ output_dim: 248
55
+
56
+
configuration.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "framework": "pytorch",
3
+ "task" : "voice-activity-detection",
4
+ "pipeline": {"type":"funasr-pipeline"},
5
+ "model": {"type" : "funasr"},
6
+ "file_path_metas": {
7
+ "init_param":"model.pt",
8
+ "config":"config.yaml",
9
+ "frontend_conf":{"cmvn_file": "am.mvn"}},
10
+ "model_name_in_hub": {
11
+ "ms":"iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
12
+ "hf":""}
13
+ }
fig/struct.png ADDED
model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3be75be477f0780277f3bae0fe489f48718f585f3a6e45d7dd1fbb1a4255fc5
3
+ size 1721366