Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,89 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- sentiment analysis
|
5 |
+
- financial sentiment analysis
|
6 |
+
- bert
|
7 |
+
- text-classification
|
8 |
+
- finance
|
9 |
+
- finbert
|
10 |
+
- financial
|
11 |
+
---
|
12 |
+
# Trading Hero Financial Sentiment Analysis
|
13 |
+
|
14 |
+
Model Description: This model is a fine-tuned version of [FinBERT](https://huggingface.co/yiyanghkust/finbert-pretrain), a BERT model pre-trained on financial texts. The fine-tuning process was conducted to adapt the model to specific financial NLP tasks, enhancing its performance on domain-specific applications for sentiment analysis.
|
15 |
+
|
16 |
+
## Model Use
|
17 |
+
|
18 |
+
Primary Users: Financial analysts, NLP researchers, and developers working on financial data.
|
19 |
+
|
20 |
+
## Training Data
|
21 |
+
|
22 |
+
Training Dataset: The model was fine-tuned on a custom dataset of financial communication texts. The dataset was split into training, validation, and test sets as follows:
|
23 |
+
|
24 |
+
Training Set: 10,918,272 tokens
|
25 |
+
Validation Set: 1,213,184 tokens
|
26 |
+
Test Set: 1,347,968 tokens
|
27 |
+
|
28 |
+
Pre-training Dataset: FinBERT was pre-trained on a large financial corpus totaling 4.9 billion tokens, including:
|
29 |
+
Corporate Reports (10-K & 10-Q): 2.5 billion tokens
|
30 |
+
Earnings Call Transcripts: 1.3 billion tokens
|
31 |
+
Analyst Reports: 1.1 billion tokens
|
32 |
+
|
33 |
+
## Evaluation
|
34 |
+
|
35 |
+
* Test Accuracy = 0.908469
|
36 |
+
* Test Precision = 0.927788
|
37 |
+
* Test Recall = 0.908469
|
38 |
+
* Test F1 = 0.913267
|
39 |
+
* **Labels**: 0 -> Neutral; 1 -> Positive; 2 -> Negative
|
40 |
+
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
```
|
45 |
+
import torch
|
46 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("fuchenru/Trading-Hero-LLM")
|
48 |
+
model = AutoModelForSequenceClassification.from_pretrained("fuchenru/Trading-Hero-LLM")
|
49 |
+
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
50 |
+
# Preprocess the input text
|
51 |
+
def preprocess(text, tokenizer, max_length=128):
|
52 |
+
inputs = tokenizer(text, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt')
|
53 |
+
return inputs
|
54 |
+
|
55 |
+
# Function to perform prediction
|
56 |
+
def predict_sentiment(input_text):
|
57 |
+
# Tokenize the input text
|
58 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
59 |
+
|
60 |
+
# Perform inference
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
+
|
64 |
+
# Get predicted label
|
65 |
+
predicted_label = torch.argmax(outputs.logits, dim=1).item()
|
66 |
+
|
67 |
+
# Map the predicted label to the original labels
|
68 |
+
label_map = {0: 'neutral', 1: 'positive', 2: 'negative'}
|
69 |
+
predicted_sentiment = label_map[predicted_label]
|
70 |
+
|
71 |
+
return predicted_sentiment
|
72 |
+
|
73 |
+
stock_news = [
|
74 |
+
"Market analysts predict a stable outlook for the coming weeks.",
|
75 |
+
"The market remained relatively flat today, with minimal movement in stock prices.",
|
76 |
+
"Investor sentiment improved following news of a potential trade deal.",
|
77 |
+
.......
|
78 |
+
]
|
79 |
+
|
80 |
+
|
81 |
+
for i in stock_news:
|
82 |
+
predicted_sentiment = predict_sentiment(i)
|
83 |
+
print("Predicted Sentiment:", predicted_sentiment)
|
84 |
+
```
|
85 |
+
```
|
86 |
+
Predicted Sentiment: neutral
|
87 |
+
Predicted Sentiment: neutral
|
88 |
+
Predicted Sentiment: positive
|
89 |
+
```
|