--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - common_voice_18_0 metrics: - wer model-index: - name: whisper-large-v3-pt-3000h-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_18_0 type: common_voice_18_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 0.10419602818705957 --- # whisper-large-v3-pt-3000h-3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the common_voice_18_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2671 - Wer: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1388 | 0.9996 | 691 | 0.1501 | 0.1074 | | 0.108 | 1.9993 | 1382 | 0.1619 | 0.1153 | | 0.091 | 2.9989 | 2073 | 0.1697 | 0.1124 | | 0.0461 | 4.0 | 2765 | 0.1764 | 0.1120 | | 0.0264 | 4.9996 | 3456 | 0.2024 | 0.1133 | | 0.0203 | 5.9993 | 4147 | 0.2200 | 0.1099 | | 0.0129 | 6.9989 | 4838 | 0.2277 | 0.1114 | | 0.0091 | 8.0 | 5530 | 0.2552 | 0.1067 | | 0.0063 | 8.9996 | 6221 | 0.2565 | 0.1054 | | 0.0019 | 9.9964 | 6910 | 0.2671 | 0.1042 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu124 - Datasets 2.18.1.dev0 - Tokenizers 0.19.1