--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer base_model: openai/whisper-large-v3 model-index: - name: whisper_finetune results: [] --- # whisper_finetune This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the aihub_100000 dataset. It achieves the following results on the evaluation set: - Loss: 1.0532 - Cer: 6.2644 - Wer: 23.9434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.5045 | 0.16 | 1000 | 1.4103 | 6.8826 | 26.6172 | | 1.0745 | 0.32 | 2000 | 1.0532 | 6.2644 | 23.9434 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.17.0 - Tokenizers 0.15.2