--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: Mistral-7B-text-to-sql-without-flash-attention-2 results: [] --- # Mistral-7B-text-to-sql-without-flash-attention-2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. with dataset b-mc2/sql-create-context ## Model description More information needed ### Testing results import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline peft_model_id = "frankmorales2020/Mistral-7B-text-to-sql-without-flash-attention-2" model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) CASE Number 1: prompt='What was the first album Beyoncé released as a solo artist?' prompt = f"Instruct: generate a SQL query.\n{prompt}\nOutput:\n" # for dataset b-mc2/sql-create-context outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id) print('Question: %s'%prompt) print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}") Question: Instruct: generate a SQL query. What was the first album Beyoncé released as a solo artist? Output: Generated Answer: SELECT first_album FROM table_name_82 WHERE solo_artist = "beyoncé" CASE Number 2: prompt='What was the first album Beyoncé released as a solo artist?' prompt = f"Instruct: Answer the following question.\n{prompt}\nOutput:\n" outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id) print('Question: %s'%prompt) print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}") Question: Instruct: Answer the following question. What was the first album Beyoncé released as a solo artist? Output: Generated Answer: The first album Beyoncé released as a solo artist was "Dangerously in Love". CASE Number 3: prompt='What was the first album Beyoncé released as a solo artist?' prompt = f"Instruct: generate a SQL query.\n{prompt}\n\n" # for dataset b-mc2/sql-create-context outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id) print('Question: %s'%prompt) print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}") Question: Instruct: generate a SQL query. What was the first album Beyoncé released as a solo artist? Generated Answer: ```sql SELECT first_album FROM table_name_84 WHERE solo_artist = "beyoncé" ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2