fracapuano commited on
Commit
76a3f45
·
verified ·
1 Parent(s): dd510e6

Upload Seq2SeqCrossFormer

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +10 -10
  3. generation_config.json +7 -0
  4. hf_transformer.py +372 -0
  5. model.safetensors +2 -2
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json CHANGED
@@ -2,24 +2,24 @@
2
  "architectures": [
3
  "Seq2SeqCrossFormer"
4
  ],
5
- "batch_size": 4,
 
 
6
  "bos_token_id": 1,
7
- "d_ff": 512,
8
- "d_model": 1024,
9
- "dropout": 0.13619667425956658,
10
  "eos_token_id": 2,
11
- "model_size": 105627906,
12
  "model_type": "custom_code",
13
- "n_heads": 16,
14
- "n_layers": 3,
15
- "num_train_epochs": 20,
16
  "pad_token_id": 0,
17
  "router_dim": 10,
18
- "sequence_length": 64,
19
  "source_sequence_dimension": 70,
20
  "target_sequence_dimension": 306,
21
  "torch_dtype": "float32",
22
- "transformers_version": "4.48.1",
23
  "vocab_size_src": 258,
24
  "vocab_size_tgt": 258
25
  }
 
2
  "architectures": [
3
  "Seq2SeqCrossFormer"
4
  ],
5
+ "auto_map": {
6
+ "AutoModel": "hf_transformer.Seq2SeqCrossFormer"
7
+ },
8
  "bos_token_id": 1,
9
+ "d_ff": 2048,
10
+ "d_model": 512,
11
+ "dropout": 0.1,
12
  "eos_token_id": 2,
 
13
  "model_type": "custom_code",
14
+ "n_heads": 8,
15
+ "n_layers": 6,
 
16
  "pad_token_id": 0,
17
  "router_dim": 10,
18
+ "sequence_length": 8192,
19
  "source_sequence_dimension": 70,
20
  "target_sequence_dimension": 306,
21
  "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0.dev0",
23
  "vocab_size_src": 258,
24
  "vocab_size_tgt": 258
25
  }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.49.0.dev0"
7
+ }
hf_transformer.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import seaborn as sns
3
+ from tqdm import tqdm
4
+
5
+ from transformers import PreTrainedModel, PretrainedConfig
6
+ from typing import Optional, Tuple, Union
7
+ import torch
8
+ import torch.nn as nn
9
+ from model.architectures.transformer import EncoderDecoderTransformer
10
+ from model.architectures.crossformer import EncoderDecoderCrossFormer
11
+ from model.hf_configs import Seq2SeqConfig, Seq2SeqCrossConfig
12
+ from einops import rearrange
13
+
14
+ class Seq2SeqTransformer(PreTrainedModel):
15
+ """
16
+ Custom Transformer for Sequence to Sequence tasks.
17
+ """
18
+ config_class = Seq2SeqConfig
19
+ base_model_prefix = "transformer"
20
+
21
+ def __init__(self, config: PretrainedConfig, device: Optional[str]=None):
22
+ super().__init__(config)
23
+ self.softmax = nn.Softmax(dim=-1)
24
+
25
+ self.transformer = EncoderDecoderTransformer(
26
+ src_vocab_size=config.vocab_size_src,
27
+ tgt_vocab_size=config.vocab_size_tgt,
28
+ embed_dim=config.d_model,
29
+ num_heads=config.n_heads,
30
+ ff_dim=config.d_ff,
31
+ num_encoder_layers=config.n_layers,
32
+ num_decoder_layers=config.n_layers,
33
+ max_seq_length=config.sequence_length
34
+ )
35
+
36
+ def _init_weights(self, module: nn.Module):
37
+ if isinstance(module, nn.Linear):
38
+ nn.init.xavier_uniform_(module.weight)
39
+ if module.bias is not None:
40
+ nn.init.constant_(module.bias, 0)
41
+
42
+ def _create_padding_mask(self, ids: torch.LongTensor) -> torch.DoubleTensor:
43
+ """Creates a mask to avoid padded tokens to be interfering with attention"""
44
+ # First create boolean mask where True = padding token
45
+ is_padding = ids.eq(self.config.pad_token_id)
46
+
47
+ # Convert to float and replace padding positions with -inf, others with 1.0
48
+ mask = is_padding.float()
49
+ mask = mask.masked_fill(is_padding, float('-inf'))
50
+ mask = mask.masked_fill(~is_padding, 1.0)
51
+ return mask
52
+
53
+ def _shift_right(self, x: torch.LongTensor) -> torch.LongTensor:
54
+ """Helper method to prepare decoder inputs (teacher forcing) by shifting right label tokens"""
55
+ shifted = torch.full(
56
+ (*x.shape[:-1], 1),
57
+ self.config.bos_token_id,
58
+ dtype=x.dtype,
59
+ device=x.device
60
+ )
61
+ shifted = torch.cat([shifted, x[:, :-1]], dim=-1)
62
+ return shifted
63
+
64
+ def _add_beginning_of_stream(self, x: torch.LongTensor) -> torch.LongTensor:
65
+ """
66
+ Helper method to add BOS token to the beginning of input sequences
67
+ """
68
+ bos = torch.full(
69
+ (*x.shape[:-1], 1),
70
+ self.config.bos_token_id,
71
+ dtype=x.dtype,
72
+ device=x.device
73
+ )
74
+
75
+ return torch.cat([bos, x], dim=-1)
76
+
77
+ def _add_end_of_stream(self, x: torch.LongTensor) -> torch.LongTensor:
78
+ """Helper method to add EOS token to the end of label sequences"""
79
+ eos = torch.full(
80
+ (*x.shape[:-1], 1),
81
+ self.config.eos_token_id,
82
+ dtype=x.dtype,
83
+ device=x.device
84
+ )
85
+ return torch.cat([x, eos], dim=-1)
86
+
87
+ def forward(
88
+ self,
89
+ input_ids: torch.LongTensor,
90
+ labels: Optional[torch.LongTensor] = None,
91
+ decoder_input_ids: Optional[torch.LongTensor] = None,
92
+ attention_mask: Optional[torch.Tensor] = None,
93
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
94
+ **kwargs
95
+ ) -> Union[Tuple, dict]:
96
+ # TODO: add/end of streaming and right shift should take place outside of the model in tokenizer
97
+
98
+ # adding beginning of stream tokens to input too
99
+ input_ids = self._add_beginning_of_stream(input_ids)
100
+
101
+ # adding end of stream tokens to labels
102
+ labels = self._add_end_of_stream(labels)
103
+ # Prepare input for the decoder
104
+ if decoder_input_ids is None and labels is not None:
105
+ decoder_input_ids = self._shift_right(labels)
106
+
107
+ src_key_padding_mask = self._create_padding_mask(input_ids)
108
+ tgt_key_padding_mask = self._create_padding_mask(decoder_input_ids)
109
+
110
+ # Forward pass through your model
111
+ outputs = self.transformer(
112
+ src=input_ids,
113
+ tgt=decoder_input_ids,
114
+ src_mask=attention_mask,
115
+ tgt_mask=decoder_attention_mask,
116
+ src_key_padding_mask=src_key_padding_mask,
117
+ tgt_key_padding_mask=tgt_key_padding_mask
118
+ )
119
+
120
+ loss = None
121
+ if labels is not None:
122
+ loss_fct = nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
123
+ loss = loss_fct(outputs.view(-1, self.config.vocab_size_tgt), labels.view(-1))
124
+
125
+ return dict(
126
+ loss=loss,
127
+ logits=outputs,
128
+ )
129
+
130
+ def generate(
131
+ self,
132
+ input_ids: torch.LongTensor,
133
+ attention_mask: Optional[torch.Tensor] = None,
134
+ max_length: Optional[int] = None,
135
+ temperature: float = 1.0,
136
+ do_sample: bool = False,
137
+ **kwargs
138
+ ) -> torch.LongTensor:
139
+
140
+ batch_size = input_ids.shape[0]
141
+ max_length = max_length or self.config.max_length or 128
142
+
143
+ decoder_input_ids = torch.full(
144
+ (batch_size, 1),
145
+ self.config.bos_token_id,
146
+ dtype=torch.long,
147
+ device=input_ids.device
148
+ )
149
+
150
+ for _ in range(max_length - 1):
151
+ outputs = self.forward(
152
+ input_ids=input_ids,
153
+ decoder_input_ids=decoder_input_ids,
154
+ attention_mask=attention_mask,
155
+ )
156
+
157
+ next_token_logits = outputs["logits"][:, -1, :]
158
+
159
+ if do_sample:
160
+ # Apply temperature scaling
161
+ scaled_logits = next_token_logits / temperature
162
+ # Convert to probabilities
163
+ next_token_probs = self.softmax(scaled_logits)
164
+ # Sample from the probability distribution
165
+ next_token = torch.multinomial(
166
+ next_token_probs, num_samples=1
167
+ ).squeeze(-1)
168
+ else:
169
+ # Greedy decoding
170
+ next_token = next_token_logits.argmax(dim=-1)
171
+
172
+ decoder_input_ids = torch.cat(
173
+ [decoder_input_ids, next_token.unsqueeze(-1)],
174
+ dim=-1
175
+ )
176
+
177
+ # Stop if all sequences have generated EOS token
178
+ if (decoder_input_ids == self.config.eos_token_id).any(dim=-1).all():
179
+ break
180
+
181
+ return decoder_input_ids
182
+
183
+
184
+ class Seq2SeqCrossFormer(Seq2SeqTransformer):
185
+ """CrossFormer wrapper predicting over a discrete vocabulatory."""
186
+ config_class = Seq2SeqCrossConfig
187
+
188
+ def __init__(self, config: PretrainedConfig):
189
+ super().__init__(config)
190
+ self.softmax = nn.Softmax(dim=-1)
191
+
192
+ self.transformer = EncoderDecoderCrossFormer(
193
+ source_sequence_dimension=config.source_sequence_dimension,
194
+ target_sequence_dimension=config.target_sequence_dimension,
195
+ router_dim=config.router_dim,
196
+ src_vocab_size=config.vocab_size_src,
197
+ tgt_vocab_size=config.vocab_size_tgt,
198
+ embed_dim=config.d_model,
199
+ num_heads=config.n_heads,
200
+ ff_dim=config.d_ff,
201
+ num_encoder_layers=config.n_layers,
202
+ num_decoder_layers=config.n_layers,
203
+ max_seq_length=config.sequence_length
204
+ )
205
+
206
+ def _shift_right(self, x: torch.LongTensor) -> torch.LongTensor:
207
+ """
208
+ Helper method to prepare decoder inputs (teacher forcing) by shifting right label tokens.
209
+ Handles 3D (B, S, C) tensors
210
+ """
211
+ # Create shape that matches x's dimensions except for seq_len which will be 1
212
+ shape = list(x.shape)
213
+ shape[-2] = 1 # Set sequence dimension to 1
214
+
215
+ shifted = torch.full(
216
+ shape,
217
+ self.config.bos_token_id,
218
+ dtype=x.dtype,
219
+ device=x.device
220
+ )
221
+ shifted = torch.cat([shifted, x[..., :-1, :]], dim=-2)
222
+ return shifted
223
+
224
+ def _add_beginning_of_stream(self, x: torch.LongTensor) -> torch.LongTensor:
225
+ """
226
+ Helper method to add BOS token to the beginning of input sequences.
227
+ Handles 3D (B, S, C) tensors
228
+ """
229
+ shape = list(x.shape)
230
+ shape[-2] = 1 # Set sequence dimension to 1
231
+ sos = torch.full(
232
+ shape,
233
+ self.config.bos_token_id,
234
+ dtype=x.dtype,
235
+ device=x.device
236
+ )
237
+
238
+ return torch.cat([sos, x], dim=-2)
239
+
240
+ def _add_end_of_stream(self, x: torch.LongTensor) -> torch.LongTensor:
241
+ """
242
+ Helper method to add EOS token to the end of label sequences.
243
+ Handles 3D (B, S, C) tensors
244
+ """
245
+ # Create shape that matches x's dimensions except for seq_len which will be 1
246
+ shape = list(x.shape)
247
+ shape[-2] = 1 # Set sequence dimension to 1
248
+
249
+ eos = torch.full(
250
+ shape,
251
+ self.config.eos_token_id,
252
+ dtype=x.dtype,
253
+ device=x.device
254
+ )
255
+ return torch.cat([x, eos], dim=-2)
256
+
257
+ def forward(
258
+ self,
259
+ input_ids: torch.LongTensor,
260
+ labels: Optional[torch.LongTensor] = None,
261
+ decoder_input_ids: Optional[torch.LongTensor] = None,
262
+ **kwargs
263
+ ):
264
+ # FIXME: add/end of streaming and right shift should take place outside of the model in tokenizer
265
+
266
+ # (in tokenizer) adding beginning of stream tokens to input too
267
+ input_ids = self._add_beginning_of_stream(input_ids)
268
+
269
+ # (in tokenizer) adding end of stream tokens to labels
270
+ if labels is not None:
271
+ labels = self._add_end_of_stream(labels)
272
+
273
+ # Prepare input for the decoder
274
+ if decoder_input_ids is None and labels is not None:
275
+ decoder_input_ids = self._shift_right(labels)
276
+
277
+ src_src_key_padding_time_mask = rearrange(
278
+ self._create_padding_mask(
279
+ input_ids
280
+ ),
281
+ 'b s c -> (b c) s'
282
+ )
283
+
284
+ tgt_tgt_key_padding_time_mask = rearrange(
285
+ self._create_padding_mask(
286
+ decoder_input_ids
287
+ ),
288
+ 'b s c -> (b c) s'
289
+ )
290
+
291
+ # Forward pass through your model
292
+ outputs = self.transformer(
293
+ src=input_ids,
294
+ tgt=decoder_input_ids,
295
+ src_src_time_mask=kwargs.get("src_src_time_mask"),
296
+ src_src_dimension_mask=kwargs.get("src_src_dimension_mask"),
297
+ src_src_key_padding_time_mask=src_src_key_padding_time_mask,
298
+ tgt_tgt_time_mask=kwargs.get("tgt_tgt_time_mask"),
299
+ tgt_tgt_dimension_mask=kwargs.get("tgt_tgt_dimension_mask"),
300
+ tgt_tgt_key_padding_time_mask=tgt_tgt_key_padding_time_mask,
301
+ tgt_src_dimension_mask=kwargs.get("tgt_src_dimension_mask")
302
+ )
303
+
304
+ loss = None
305
+ if labels is not None:
306
+ loss_fct = nn.CrossEntropyLoss(
307
+ ignore_index=self.config.pad_token_id
308
+ )
309
+ loss = loss_fct(
310
+ outputs.view(-1, self.config.vocab_size_tgt), labels.view(-1)
311
+ )
312
+
313
+ return dict(
314
+ loss=loss,
315
+ logits=outputs,
316
+ )
317
+
318
+ def generate(
319
+ self,
320
+ input_ids: torch.LongTensor,
321
+ attention_mask: Optional[torch.Tensor]=None,
322
+ max_length: Optional[int]=None,
323
+ temperature: float=1.0,
324
+ do_sample: bool=False,
325
+ **kwargs
326
+ ) -> torch.LongTensor:
327
+
328
+ batch_size, timesteps, channels = input_ids.shape
329
+
330
+ src_key_padding_mask = self._create_padding_mask(input_ids)
331
+ max_length = max_length or self.config.max_length or 128
332
+
333
+ decoder_input_ids = torch.full(
334
+ (batch_size, timesteps + 1, 306), # decoder model generates MEG data
335
+ self.config.pad_token_id,
336
+ dtype=torch.long,
337
+ device=input_ids.device
338
+ )
339
+
340
+ # Set BOS token at the start
341
+ decoder_input_ids[:, 0, :] = self.config.bos_token_id
342
+
343
+ for t in tqdm(range(timesteps + max_length)):
344
+ outputs = self.forward(
345
+ input_ids=input_ids,
346
+ decoder_input_ids=decoder_input_ids,
347
+ attention_mask=attention_mask
348
+ )
349
+
350
+ # Get predictions for this timestep
351
+ next_token_logits = outputs["logits"][:, t, :]
352
+
353
+ if do_sample:
354
+ scaled_logits = next_token_logits / temperature
355
+ next_token_probs = self.softmax(scaled_logits)
356
+ next_token = torch.multinomial(
357
+ next_token_probs, num_samples=1
358
+ ).squeeze(-1)
359
+ else:
360
+ next_token = next_token_logits.argmax(dim=-1)
361
+
362
+ # Place the predicted token at position t
363
+ decoder_input_ids[:, t, :] = next_token
364
+
365
+ # Check if all sequences have generated EOS token
366
+ if (next_token == self.config.eos_token_id).all():
367
+ break
368
+
369
+ decoder_input_ids = decoder_input_ids[:, -(timesteps+1):, :]
370
+
371
+ return decoder_input_ids
372
+
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9af0ca64bec37209cdda5d3dfd7d511d067fc283dc55f04e17e54098f5bae7ea
3
- size 422536616
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9bfed22b64ce72f8741b5d4f11b9a61060158c816627143ec6c00430165ef5
3
+ size 2393519960