--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - axolotl - generated_from_trainer model-index: - name: phi-3.5-alpaca-test-classifier results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml strict: false base_model: microsoft/Phi-3.5-mini-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true chat_template: phi_3 datasets: - path: fozziethebeat/alpaca_messages_classifier_2k_test type: chat_template split: train chat_template: phi_3 field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 2048 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 8 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 5.0e-5 train_on_inputs: false group_by_length: false bfloat16: true bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 4 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: ```

# phi-3.5-alpaca-test-classifier This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co./microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7206 | 0.0187 | 1 | 11.9120 | | 9.4452 | 0.2617 | 14 | 9.1059 | | 2.2582 | 0.5234 | 28 | 1.8353 | | 0.1463 | 0.7850 | 42 | 0.1658 | | 0.1315 | 1.0467 | 56 | 0.1291 | | 0.1207 | 1.3084 | 70 | 0.1218 | | 0.1238 | 1.5701 | 84 | 0.1196 | | 0.1103 | 1.8318 | 98 | 0.1174 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1