--- license: mit library_name: peft language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 --- **Website**: [FireAct Agent](https://fireact-agent.github.io) # **FireAct Llama-2/CodeLlama** FireAct Llama/CodeLlama is a collection of fine-tuned generative text models for performaning ReAct with external search tools. Links to other models can be found in the Index section. ## Foundation Model Details *Note: As the foundation models, Llama-2 and CodeLlama, are developed by Meta, please also read the guidence and license on their website, [Llama-2](https://huggingface.co./meta-llama) and [CodeLlama](https://huggingface.co./codellama), before using FireAct models.* **Model Developers** Sysmtem 2 Research, Cambridge LTL, Monash University, Princeton PLI. **Variations** FireAct models including Llama-2-7B full fine-tuned models, and Llama-2-[7B,13B], CodeLlama-[7B,13B,34B] LoRA fine-tuned models. All released models are fine-tuned on multi-task (HotpotQA/StrategyQA/MMLU) and multi-types (ReAct/CoT/Reflexion) data. **Input** Models input text only. **Output** Models generate text only. ## Index **Full Fine-tuned Model** FireAct Llama-2: - [fireact_llama_2_7b](https://huggingface.co./forestai/fireact_llama_2_7b) **LoRA Fine-tuned Model** FireAct Llama-2: - [fireact_llama_2_7b_lora](https://huggingface.co./forestai/fireact_llama_2_7b_lora) - [fireact_llama_2_13b_lora](https://huggingface.co./forestai/fireact_llama_2_13b_lora) FireAct CodeLlama: - [fireact_codellama_7b_lora](https://huggingface.co./forestai/fireact_codellama_7b_lora) - [fireact_codellama_13b_lora](https://huggingface.co./forestai/fireact_codellama_13b_lora) - [fireact_codellama_34b_lora](https://huggingface.co./forestai/fireact_codellama_34b_lora) ## LoRA Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0