fullstack commited on
Commit
27ddfde
·
verified ·
1 Parent(s): cfeaf3b

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +66 -173
  2. run_vllm_2b.sh +2 -1
README.md CHANGED
@@ -1,202 +1,95 @@
1
- ---
2
- base_model: unsloth/gemma-2-2b-bnb-4bit
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
170
 
171
- ## Citation [optional]
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.12.0
 
1
+ # GPQA Generator: Fine-tuned Gemma 2B for Google-Proof Question Generation
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Details
4
 
5
+ - **Model Type:** Language Model
6
+ - **Base Model:** unsloth/gemma-2-2b-bnb-4bit
7
+ - **Fine-tuned by:** [Your Organization/Name]
8
+ - **License:** [Specify the license]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ This model is a fine-tuned version of the Gemma 2B base model, specifically tailored to generate Google-Proof Question and Answer (GPQA) sets. It produces graduate-level, context-rich multiple-choice questions along with one correct answer, three incorrect answers, and an explanation.
 
 
 
 
11
 
12
+ ## Intended Use
13
 
14
+ This model is designed for educational content creators, assessment developers, and researchers who need to generate complex, Google-proof multiple-choice questions across various academic disciplines.
15
 
16
+ ### Primary Use Cases:
17
 
18
+ - Generating challenging assessment questions for advanced students
19
+ - Creating content for educational platforms and applications
20
+ - Assisting in the development of standardized tests
21
+ - Supporting research in question generation and educational assessment
22
 
23
+ ## How to Use
24
 
25
+ ### Setting Up
26
 
27
+ 1. Clone the repository containing the model and scripts.
28
+ 2. Ensure you have the required dependencies installed (httpx, transformers, etc.).
29
 
30
+ ### Running the Model
31
 
32
+ 1. Start the vLLM server:
33
+ ```
34
+ ./run_vllm_2b.sh
35
+ ```
36
 
37
+ 2. Generate questions using the `generate.py` script:
38
+
39
+ For a single category:
40
+ ```
41
+ python generate.py --category "Your Category" --depth 4
42
+ ```
43
 
44
+ To use predefined categories:
45
+ ```
46
+ python generate.py --use-array --depth 4
47
+ ```
48
 
49
+ ### Configuration
50
 
51
+ - Modify the `CATEGORIES_TO_PROCESS` list in the script to add or change predefined categories.
52
+ - Adjust the `max_depth` parameter to control the depth of subcategory exploration.
53
+ - The script uses multi-threading for efficient processing. Adjust `num_threads` in `process_categories()` if needed.
54
 
55
+ ## Sample Output
56
 
57
+ Here's an example of the generated output:
58
 
59
+ ```json
60
+ {
61
+ "question": "A developer is working on a large project that uses Mercurial version control. They need to merge a branch containing bug fixes from another team. What is the recommended approach to avoid merging conflicts?",
62
+ "answer": "The developer should: \n1. Create a new branch from the source directory. \n2. Compare the history of the branches. \n3. Resolve conflicts manually. \n4. Commit the changes. ",
63
+ "incorrect_answer_1": "Merge the branches directly.",
64
+ "incorrect_answer_2": "Skip the merge process altogether.",
65
+ "incorrect_answer_3": "Use a third-party tool like Git.",
66
+ "explanation": "Merging branches in Mercurial requires careful consideration to avoid conflicts. Here's a breakdown of the reasoning: \n1. Branch Creation: Creating a new branch allows the developer to isolate the changes from the other team without affecting the base branch.\n2. Conflict Detection: Comparing the histories of the branches helps identify potential conflicts that may arise during the merge.\n3. Conflict Resolution: Manual conflict resolution is essential to ensure the merge is successful. Mercurial provides tools like \"diff\" and \"merge\" commands for this purpose.\n4. Committing Changes: Once the merge is complete, the developer should commit the changes to their new branch.",
67
+ "subcategories": ["Version Control", "Mercurial", "Merge Conflicts"],
68
+ "category": "Mercurial",
69
+ "depth": 0
70
+ }
71
+ ```
72
 
73
+ ## Limitations
74
 
75
+ - The model generates questions based on its training data, which may not always reflect the most current information in rapidly evolving fields.
76
+ - While designed to be "Google-proof," the effectiveness may vary depending on the specific topic and how information is presented online.
77
+ - The quality and accuracy of generated questions should be reviewed by subject matter experts before use in formal assessments.
78
 
79
+ ## Ethical Considerations
80
 
81
+ - Users should be aware of potential biases in the generated content and review questions for fairness and inclusivity.
82
+ - The model should not be used to generate misleading or factually incorrect information.
83
+ - Respect copyright and intellectual property rights when using generated content.
84
 
85
+ ## Citation
86
 
87
+ If you use this model in your research or applications, please cite it as follows:
88
 
89
+ ```
90
+ [Citation information to be added]
91
+ ```
92
 
93
+ ## Contact
 
94
 
95
+ For questions, feedback, or support, please contact [Your Contact Information].
run_vllm_2b.sh CHANGED
@@ -5,6 +5,7 @@ VLLM_ALLOW_RUNTIME_LORA_UPDATING=1 VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve ~/
5
  --trust-remote-code \
6
  --max-model-len 8192 \
7
  --disable-log-requests \
8
- --guided-decoding-backend lm-format-enforcer \
9
  --enable-lora \
10
  --lora-modules gpqa=./gpqa \
 
 
 
5
  --trust-remote-code \
6
  --max-model-len 8192 \
7
  --disable-log-requests \
 
8
  --enable-lora \
9
  --lora-modules gpqa=./gpqa \
10
+
11
+ # --guided-decoding-backend lm-format-enforcer \