flyingfishinwater commited on
Commit
cd6e1fc
·
verified ·
1 Parent(s): 5719315

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -280
README.md CHANGED
@@ -1,210 +1,130 @@
1
  # LiteLlama
2
-
3
- It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
4
-
5
- **Model Intention:** This is a 460 parameters' very small model for test purpose only
6
-
7
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)
8
-
9
- **Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
10
-
11
- **Model License:** [License Info](https://ai.meta.com/llama/license/)
12
-
13
- **Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
14
-
15
- **Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
16
-
17
- **File Size:** 493 MB
18
-
19
- **Context Length:** 1024 tokens
20
-
21
  **Prompt Format:**
22
 
23
  ```
24
  <human>: {{prompt}}
25
  <bot>:
26
- ```
27
-
28
- **Template Name:** TinyLlama
29
-
30
- **Add BOS Token:** Yes
31
-
32
- **Add EOS Token:** No
33
-
34
- **Parse Special Tokens:** Yes
35
 
 
 
 
 
36
 
37
  ---
38
 
39
  # TinyLlama-1.1B-chat
40
-
41
- The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
42
-
43
- **Model Intention:** It's good for question & answer.
44
-
45
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)
46
-
47
- **Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
48
-
49
- **Model License:** [License Info](https://ai.meta.com/llama/license/)
50
-
51
- **Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
52
-
53
- **Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)
54
-
55
- **File Size:** 1170 MB
56
-
57
- **Context Length:** 4096 tokens
58
-
59
  **Prompt Format:**
60
 
61
  ```
62
  <|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
63
- ```
64
-
65
- **Template Name:** TinyLlama
66
-
67
- **Add BOS Token:** Yes
68
-
69
- **Add EOS Token:** No
70
-
71
- **Parse Special Tokens:** Yes
72
 
 
 
 
 
73
 
74
  ---
75
 
76
  # Mistral 7B v0.2
77
-
78
- The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
79
-
80
- **Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.
81
-
82
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)
83
-
84
- **Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
85
-
86
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
87
-
88
- **Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
89
-
90
- **Developer:** [https://mistral.ai/](https://mistral.ai/)
91
-
92
- **File Size:** 7695 MB
93
-
94
- **Context Length:** 4096 tokens
95
-
96
  **Prompt Format:**
97
 
98
  ```
99
  <s>[INST]{{prompt}}[/INST]</s>
100
- ```
101
-
102
- **Template Name:** Mistral
103
-
104
- **Add BOS Token:** Yes
105
-
106
- **Add EOS Token:** No
107
-
108
- **Parse Special Tokens:** Yes
109
 
 
 
 
 
110
 
111
  ---
112
 
113
  # OpenChat 3.5
114
-
115
- OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
116
-
117
- **Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.
118
-
119
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)
120
-
121
- **Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
122
-
123
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
124
-
125
- **Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
126
-
127
- **Developer:** [https://openchat.team/](https://openchat.team/)
128
-
129
- **File Size:** 7695 MB
130
-
131
- **Context Length:** 4096 tokens
132
-
133
  **Prompt Format:**
134
 
135
  ```
136
  <s>[INST]{{prompt}}[/INST]</s>
137
- ```
138
-
139
- **Template Name:** Mistral
140
-
141
- **Add BOS Token:** Yes
142
-
143
- **Add EOS Token:** No
144
-
145
- **Parse Special Tokens:** Yes
146
 
 
 
 
 
147
 
148
  ---
149
 
150
  # Phi-2
151
-
152
- Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
153
-
154
- **Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes
155
-
156
- **Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)
157
-
158
- **Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
159
-
160
- **Model License:** [License Info](https://opensource.org/license/mit)
161
-
162
- **Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
163
-
164
- **Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
165
-
166
- **File Size:** 2960 MB
167
-
168
- **Context Length:** 4096 tokens
169
-
170
  **Prompt Format:**
171
 
172
  ```
173
  Instruct: {{prompt}}
174
  Output:
175
- ```
176
-
177
- **Template Name:** PHI
178
-
179
- **Add BOS Token:** Yes
180
-
181
- **Add EOS Token:** No
182
-
183
- **Parse Special Tokens:** Yes
184
 
 
 
 
 
185
 
186
  ---
187
 
188
  # Yi 6B Chat
189
-
190
- The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
191
-
192
- **Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat
193
-
194
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)
195
-
196
- **Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
197
-
198
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
199
-
200
- **Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
201
-
202
- **Developer:** [https://01.ai/](https://01.ai/)
203
-
204
- **File Size:** 6440 MB
205
-
206
- **Context Length:** 200000 tokens
207
-
208
  **Prompt Format:**
209
 
210
  ```
@@ -213,39 +133,25 @@ The Yi series models are the next generation of open-source large language model
213
  {{prompt}}
214
  <|im_start|>assistant
215
 
216
- ```
217
-
218
- **Template Name:** yi
219
-
220
- **Add BOS Token:** Yes
221
-
222
- **Add EOS Token:** No
223
-
224
- **Parse Special Tokens:** Yes
225
 
 
 
 
 
226
 
227
  ---
228
 
229
  # Google Gemma 2B
230
-
231
- Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
232
-
233
- **Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.
234
-
235
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)
236
-
237
- **Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)
238
-
239
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
240
-
241
- **Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
242
-
243
- **Developer:** [https://huggingface.co/google](https://huggingface.co/google)
244
-
245
- **File Size:** 2669 MB
246
-
247
- **Context Length:** 8192 tokens
248
-
249
  **Prompt Format:**
250
 
251
  ```
@@ -253,78 +159,50 @@ Gemma is a family of lightweight, state-of-the-art open models built from the sa
253
  {{prompt}}<end_of_turn>
254
  <start_of_turn>model
255
 
256
- ```
257
-
258
- **Template Name:** gemma
259
-
260
- **Add BOS Token:** Yes
261
-
262
- **Add EOS Token:** No
263
-
264
- **Parse Special Tokens:** Yes
265
 
 
 
 
 
266
 
267
  ---
268
 
269
  # StarCoder2 3B
270
-
271
- StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
272
-
273
- **Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements
274
-
275
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)
276
-
277
- **Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)
278
-
279
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
280
-
281
- **Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
282
-
283
- **Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)
284
-
285
- **File Size:** 3220 MB
286
-
287
- **Context Length:** 8192 tokens
288
-
289
  **Prompt Format:**
290
 
291
  ```
292
  ### Instruction
293
  {{prompt}}### Response
294
 
295
- ```
296
-
297
- **Template Name:** starcoder
298
-
299
- **Add BOS Token:** Yes
300
-
301
- **Add EOS Token:** No
302
-
303
- **Parse Special Tokens:** Yes
304
 
 
 
 
 
305
 
306
  ---
307
 
308
  # Chinese Tiny LLM 2B
309
-
310
- Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
311
-
312
- **Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力
313
-
314
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)
315
-
316
- **Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)
317
-
318
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
319
-
320
- **Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
321
-
322
- **Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)
323
-
324
- **File Size:** 2218 MB
325
-
326
- **Context Length:** 4096 tokens
327
-
328
  **Prompt Format:**
329
 
330
  ```
@@ -333,39 +211,25 @@ Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在
333
  <|im_end|>
334
  <|im_start|>assistant
335
 
336
- ```
337
-
338
- **Template Name:** chatml
339
-
340
- **Add BOS Token:** Yes
341
-
342
- **Add EOS Token:** No
343
-
344
- **Parse Special Tokens:** Yes
345
 
 
 
 
 
346
 
347
  ---
348
 
349
  # Dophin 2.8 Mistralv02 7B
350
-
351
- This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
352
-
353
- **Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac
354
-
355
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)
356
-
357
- **Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
358
-
359
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
360
-
361
- **Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
362
-
363
- **Developer:** [https://erichartford.com/](https://erichartford.com/)
364
-
365
- **File Size:** 2728 MB
366
-
367
- **Context Length:** 16384 tokens
368
-
369
  **Prompt Format:**
370
 
371
  ```
@@ -374,15 +238,11 @@ This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensor
374
  <|im_end|>
375
  <|im_start|>assistant
376
 
377
- ```
378
-
379
- **Template Name:** chatml
380
-
381
- **Add BOS Token:** Yes
382
-
383
- **Add EOS Token:** No
384
-
385
- **Parse Special Tokens:** Yes
386
 
 
 
 
 
387
 
388
  ---
 
1
  # LiteLlama
2
+ It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
3
+ **Model Intention:** This is a 460 parameters' very small model for test purpose only
4
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)
5
+ **Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
6
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
7
+ **Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
8
+ **Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
9
+ **File Size:** 493 MB
10
+ **Context Length:** 1024 tokens
 
 
 
 
 
 
 
 
 
 
11
  **Prompt Format:**
12
 
13
  ```
14
  <human>: {{prompt}}
15
  <bot>:
16
+ ```
 
 
 
 
 
 
 
 
17
 
18
+ **Template Name:** TinyLlama
19
+ **Add BOS Token:** Yes
20
+ **Add EOS Token:** No
21
+ **Parse Special Tokens:** Yes
22
 
23
  ---
24
 
25
  # TinyLlama-1.1B-chat
26
+ The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
27
+ **Model Intention:** It's good for question & answer.
28
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)
29
+ **Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
30
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
31
+ **Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
32
+ **Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)
33
+ **File Size:** 1170 MB
34
+ **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
 
35
  **Prompt Format:**
36
 
37
  ```
38
  <|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
39
+ ```
 
 
 
 
 
 
 
 
40
 
41
+ **Template Name:** TinyLlama
42
+ **Add BOS Token:** Yes
43
+ **Add EOS Token:** No
44
+ **Parse Special Tokens:** Yes
45
 
46
  ---
47
 
48
  # Mistral 7B v0.2
49
+ The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
50
+ **Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.
51
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)
52
+ **Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
53
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
54
+ **Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
55
+ **Developer:** [https://mistral.ai/](https://mistral.ai/)
56
+ **File Size:** 7695 MB
57
+ **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
 
58
  **Prompt Format:**
59
 
60
  ```
61
  <s>[INST]{{prompt}}[/INST]</s>
62
+ ```
 
 
 
 
 
 
 
 
63
 
64
+ **Template Name:** Mistral
65
+ **Add BOS Token:** Yes
66
+ **Add EOS Token:** No
67
+ **Parse Special Tokens:** Yes
68
 
69
  ---
70
 
71
  # OpenChat 3.5
72
+ OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
73
+ **Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.
74
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)
75
+ **Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
76
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
77
+ **Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
78
+ **Developer:** [https://openchat.team/](https://openchat.team/)
79
+ **File Size:** 7695 MB
80
+ **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
 
81
  **Prompt Format:**
82
 
83
  ```
84
  <s>[INST]{{prompt}}[/INST]</s>
85
+ ```
 
 
 
 
 
 
 
 
86
 
87
+ **Template Name:** Mistral
88
+ **Add BOS Token:** Yes
89
+ **Add EOS Token:** No
90
+ **Parse Special Tokens:** Yes
91
 
92
  ---
93
 
94
  # Phi-2
95
+ Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
96
+ **Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes
97
+ **Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)
98
+ **Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
99
+ **Model License:** [License Info](https://opensource.org/license/mit)
100
+ **Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
101
+ **Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
102
+ **File Size:** 2960 MB
103
+ **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
 
104
  **Prompt Format:**
105
 
106
  ```
107
  Instruct: {{prompt}}
108
  Output:
109
+ ```
 
 
 
 
 
 
 
 
110
 
111
+ **Template Name:** PHI
112
+ **Add BOS Token:** Yes
113
+ **Add EOS Token:** No
114
+ **Parse Special Tokens:** Yes
115
 
116
  ---
117
 
118
  # Yi 6B Chat
119
+ The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
120
+ **Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat
121
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)
122
+ **Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
123
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
124
+ **Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
125
+ **Developer:** [https://01.ai/](https://01.ai/)
126
+ **File Size:** 6440 MB
127
+ **Context Length:** 200000 tokens
 
 
 
 
 
 
 
 
 
 
128
  **Prompt Format:**
129
 
130
  ```
 
133
  {{prompt}}
134
  <|im_start|>assistant
135
 
136
+ ```
 
 
 
 
 
 
 
 
137
 
138
+ **Template Name:** yi
139
+ **Add BOS Token:** Yes
140
+ **Add EOS Token:** No
141
+ **Parse Special Tokens:** Yes
142
 
143
  ---
144
 
145
  # Google Gemma 2B
146
+ Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
147
+ **Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.
148
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)
149
+ **Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)
150
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
151
+ **Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
152
+ **Developer:** [https://huggingface.co/google](https://huggingface.co/google)
153
+ **File Size:** 2669 MB
154
+ **Context Length:** 8192 tokens
 
 
 
 
 
 
 
 
 
 
155
  **Prompt Format:**
156
 
157
  ```
 
159
  {{prompt}}<end_of_turn>
160
  <start_of_turn>model
161
 
162
+ ```
 
 
 
 
 
 
 
 
163
 
164
+ **Template Name:** gemma
165
+ **Add BOS Token:** Yes
166
+ **Add EOS Token:** No
167
+ **Parse Special Tokens:** Yes
168
 
169
  ---
170
 
171
  # StarCoder2 3B
172
+ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
173
+ **Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements
174
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)
175
+ **Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)
176
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
177
+ **Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
178
+ **Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)
179
+ **File Size:** 3220 MB
180
+ **Context Length:** 8192 tokens
 
 
 
 
 
 
 
 
 
 
181
  **Prompt Format:**
182
 
183
  ```
184
  ### Instruction
185
  {{prompt}}### Response
186
 
187
+ ```
 
 
 
 
 
 
 
 
188
 
189
+ **Template Name:** starcoder
190
+ **Add BOS Token:** Yes
191
+ **Add EOS Token:** No
192
+ **Parse Special Tokens:** Yes
193
 
194
  ---
195
 
196
  # Chinese Tiny LLM 2B
197
+ Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
198
+ **Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力
199
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)
200
+ **Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)
201
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
202
+ **Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
203
+ **Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)
204
+ **File Size:** 2218 MB
205
+ **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
 
206
  **Prompt Format:**
207
 
208
  ```
 
211
  <|im_end|>
212
  <|im_start|>assistant
213
 
214
+ ```
 
 
 
 
 
 
 
 
215
 
216
+ **Template Name:** chatml
217
+ **Add BOS Token:** Yes
218
+ **Add EOS Token:** No
219
+ **Parse Special Tokens:** Yes
220
 
221
  ---
222
 
223
  # Dophin 2.8 Mistralv02 7B
224
+ This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
225
+ **Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac
226
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)
227
+ **Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
228
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
229
+ **Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
230
+ **Developer:** [https://erichartford.com/](https://erichartford.com/)
231
+ **File Size:** 2728 MB
232
+ **Context Length:** 16384 tokens
 
 
 
 
 
 
 
 
 
 
233
  **Prompt Format:**
234
 
235
  ```
 
238
  <|im_end|>
239
  <|im_start|>assistant
240
 
241
+ ```
 
 
 
 
 
 
 
 
242
 
243
+ **Template Name:** chatml
244
+ **Add BOS Token:** Yes
245
+ **Add EOS Token:** No
246
+ **Parse Special Tokens:** Yes
247
 
248
  ---