Add scripts for later job ft
Browse files
notes/{data_preparation.ipynb → data_preparation_ft.ipynb}
RENAMED
File without changes
|
notes/data_preparation_pt.ipynb
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import sys"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 5,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [
|
18 |
+
{
|
19 |
+
"data": {
|
20 |
+
"text/plain": "['../src',\n '/Users/m3hrdadfi/Projects/HF/hfflax/hub/wav2vec2-base-persian/notes',\n '/Users/m3hrdadfi/.vscode/extensions/ms-toolsai.jupyter-2021.2.603412351/pythonFiles',\n '/Users/m3hrdadfi/.vscode/extensions/ms-toolsai.jupyter-2021.2.603412351/pythonFiles/lib/python',\n '/Users/m3hrdadfi/opt/anaconda3/envs/transformers/lib/python39.zip',\n '/Users/m3hrdadfi/opt/anaconda3/envs/transformers/lib/python3.9',\n '/Users/m3hrdadfi/opt/anaconda3/envs/transformers/lib/python3.9/lib-dynload',\n '',\n '/Users/m3hrdadfi/opt/anaconda3/envs/transformers/lib/python3.9/site-packages',\n '/Users/m3hrdadfi/Projects/Apps/zabanshenas',\n '/Users/m3hrdadfi/opt/anaconda3/envs/transformers/lib/python3.9/site-packages/IPython/extensions',\n '/Users/m3hrdadfi/.ipython']"
|
21 |
+
},
|
22 |
+
"execution_count": 5,
|
23 |
+
"metadata": {},
|
24 |
+
"output_type": "execute_result"
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"source": [
|
28 |
+
"sys.path"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 4,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"if \"../src\" not in sys.path:\n",
|
38 |
+
" sys.path.insert(0, \"../src\")"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 6,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"from normalizer import normalizer"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 7,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"name": "stdout",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"سلام بر شما که میآیید و میآموزید که بیآرآیم \n",
|
60 |
+
"کتابهایمان میدانی کجاها ماههاس که کیهامون و کیهان دنبالههاشون برای بهای هستند \n",
|
61 |
+
"میانافزارهای امروزی نرمافزار سختافزار امروز نوشتافزارها \n",
|
62 |
+
"این کتاب بهترین در نوع شتر آسانتر هست \n",
|
63 |
+
"سه چیز هست که از پژوهش در این زمینه آموختهام \n"
|
64 |
+
]
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"input_text = \"سلام بر شما که میآیید و میآموزید که بیآرآیم\"\n",
|
69 |
+
"print(normalizer({\"sentence\": input_text}, return_dict=False))\n",
|
70 |
+
"\n",
|
71 |
+
"input_text = \"کتابهایمان میدانی کجاها ماههاس که کیهامون و کیهان دنبالههاشون برای بهای هستند.\"\n",
|
72 |
+
"print(normalizer({\"sentence\": input_text}, return_dict=False))\n",
|
73 |
+
"\n",
|
74 |
+
"input_text = \" میانافزارهای امروزی نرمافزار سخت افزار امروز نوشتافزار ها\"\n",
|
75 |
+
"print(normalizer({\"sentence\": input_text}, return_dict=False))\n",
|
76 |
+
"\n",
|
77 |
+
"input_text = \"این کتاب بهترین در نوع شتر آسانتر هست\"\n",
|
78 |
+
"print(normalizer({\"sentence\": input_text}, return_dict=False))\n",
|
79 |
+
"\n",
|
80 |
+
"input_text = \"سه چیز هست که از پژوهش در این زمینه آموختهام\"\n",
|
81 |
+
"print(normalizer({\"sentence\": input_text}, return_dict=False))"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 12,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"# !mkdir -p /home/m3hrdadfi/code/data\n",
|
91 |
+
"# %cd /home/m3hrdadfi/code/data\n",
|
92 |
+
"# !wget https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/fa.tar.gz && tar -xzf fa.tar.gz\n",
|
93 |
+
"# %cd /home/m3hrdadfi/"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 13,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"# import os\n",
|
103 |
+
"\n",
|
104 |
+
"# lang = \"fa\"\n",
|
105 |
+
"# abs_path_to_data = os.path.join(f\"/home/m3hrdadfi/code/data/{lang}/dataset\", f\"cv{lang}\", lang)\n",
|
106 |
+
"# save_path = \"/\".join(abs_path_to_data.split('/')[:-2])\n",
|
107 |
+
"# print(abs_path_to_data)\n",
|
108 |
+
"# print(save_path)\n",
|
109 |
+
"# print()\n",
|
110 |
+
"# !ls {save_path}\n",
|
111 |
+
"# !ls {abs_path_to_data}/*.tsv"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 14,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"def normalizer_without_batch(text, pruning=False):\n",
|
121 |
+
" try:\n",
|
122 |
+
" batch = {\n",
|
123 |
+
" \"sentence\": text\n",
|
124 |
+
" }\n",
|
125 |
+
" text = normalizer(batch, return_dict=False)\n",
|
126 |
+
" \n",
|
127 |
+
" if pruning:\n",
|
128 |
+
" if not len(text.split()) > 3:\n",
|
129 |
+
" text = None\n",
|
130 |
+
" \n",
|
131 |
+
" except:\n",
|
132 |
+
" print(text)\n",
|
133 |
+
" text = None\n",
|
134 |
+
" \n",
|
135 |
+
" return text"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": 15,
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [],
|
143 |
+
"source": [
|
144 |
+
"import pandas as pd\n",
|
145 |
+
"import numpy as np\n",
|
146 |
+
"from tqdm import tqdm"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 16,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# test_df = pd.read_csv(f\"{abs_path_to_data}/test.tsv\", sep=\"\\t\")\n",
|
156 |
+
"\n",
|
157 |
+
"# print(f\"Step 0: {len(test_df)}\")\n",
|
158 |
+
"\n",
|
159 |
+
"# test_df[\"path\"] = abs_path_to_data + \"/clips/\" + test_df[\"path\"]\n",
|
160 |
+
"# test_df[\"status\"] = test_df[\"path\"].apply(lambda path: True if os.path.exists(path) else None)\n",
|
161 |
+
"# test_df = test_df.dropna(subset=[\"path\"])\n",
|
162 |
+
"# test_df = test_df.drop(\"status\", 1)\n",
|
163 |
+
"# print(f\"Step 1: {len(test_df)}\")\n",
|
164 |
+
"\n",
|
165 |
+
"# test_df[\"prev_sentence\"] = test_df[\"sentence\"]\n",
|
166 |
+
"# test_df[\"sentence\"] = test_df[\"sentence\"].apply(lambda t: normalizer_without_batch(t))\n",
|
167 |
+
"# test_df = test_df.dropna(subset=[\"sentence\"])\n",
|
168 |
+
"# print(f\"Step 2: {len(test_df)}\")\n",
|
169 |
+
"\n",
|
170 |
+
"# test_df = test_df[[\"prev_sentence\", \"sentence\", \"path\"]]\n",
|
171 |
+
"# test_df = test_df.drop_duplicates(subset=\"path\")\n",
|
172 |
+
"# print(f\"Step 3: {len(test_df)}\")\n",
|
173 |
+
"\n",
|
174 |
+
"# test_df = test_df.reset_index(drop=True)\n",
|
175 |
+
"# test_df.head()"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 17,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"# _train_df = pd.concat([\n",
|
185 |
+
"# pd.read_csv(f\"{abs_path_to_data}/train.tsv\", sep=\"\\t\"),\n",
|
186 |
+
"# pd.read_csv(f\"{abs_path_to_data}/dev.tsv\", sep=\"\\t\"),\n",
|
187 |
+
"# ])\n",
|
188 |
+
"# print(len(_train_df))\n",
|
189 |
+
"\n",
|
190 |
+
"# train_df = pd.concat([\n",
|
191 |
+
"# pd.read_csv(f\"{abs_path_to_data}/train.tsv\", sep=\"\\t\"),\n",
|
192 |
+
"# pd.read_csv(f\"{abs_path_to_data}/dev.tsv\", sep=\"\\t\"),\n",
|
193 |
+
"# pd.read_csv(f\"{abs_path_to_data}/validated.tsv\", sep=\"\\t\"),\n",
|
194 |
+
"# pd.read_csv(f\"{abs_path_to_data}/other.tsv\", sep=\"\\t\"),\n",
|
195 |
+
"# ])\n",
|
196 |
+
"# print(f\"Step 0: {len(train_df)}\")\n",
|
197 |
+
"\n",
|
198 |
+
"# train_df[\"path\"] = abs_path_to_data + \"/clips/\" + train_df[\"path\"]\n",
|
199 |
+
"# train_df[\"status\"] = train_df[\"path\"].apply(lambda path: True if os.path.exists(path) else None)\n",
|
200 |
+
"# train_df = train_df.dropna(subset=[\"path\"])\n",
|
201 |
+
"# train_df = train_df.drop(\"status\", 1)\n",
|
202 |
+
"# print(f\"Step 1: {len(train_df)}\")\n",
|
203 |
+
"\n",
|
204 |
+
"# train_df[\"prev_sentence\"] = train_df[\"sentence\"]\n",
|
205 |
+
"# train_df[\"sentence\"] = train_df[\"sentence\"].apply(lambda t: normalizer_without_batch(t, pruning=True))\n",
|
206 |
+
"# train_df = train_df.dropna(subset=[\"sentence\"])\n",
|
207 |
+
"# print(f\"Step 2: {len(train_df)}\")\n",
|
208 |
+
"\n",
|
209 |
+
"# train_df = train_df[[\"prev_sentence\", \"sentence\", \"path\"]]\n",
|
210 |
+
"# train_df = train_df.drop_duplicates(subset=\"path\")\n",
|
211 |
+
"# print(f\"Step 3: {len(train_df)}\")\n",
|
212 |
+
"\n",
|
213 |
+
"# train_df = train_df.sample(frac=1)\n",
|
214 |
+
"# train_df = train_df.reset_index(drop=True)\n",
|
215 |
+
"# train_df.head()"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 18,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"# from tqdm import tqdm\n",
|
225 |
+
"\n",
|
226 |
+
"# testset_indices = []\n",
|
227 |
+
"\n",
|
228 |
+
"# for index, row in tqdm(test_df.iterrows(), total=len(test_df), position=0):\n",
|
229 |
+
"# _id = row[\"path\"]\n",
|
230 |
+
"# finder = train_df[train_df[\"path\"] == _id]\n",
|
231 |
+
"# if len(finder) > 0:\n",
|
232 |
+
"# testset_indices.extend(list(finder.index))\n",
|
233 |
+
"\n",
|
234 |
+
"# testset_indices = list(set(testset_indices))\n",
|
235 |
+
"# print(f\"Found #{len(testset_indices)} test data\")"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 19,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"# print(len(train_df))\n",
|
245 |
+
"# train_df = train_df.drop(testset_indices)\n",
|
246 |
+
"# print(len(train_df))"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 20,
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"# import pandas as pd\n",
|
256 |
+
"\n",
|
257 |
+
"# df = pd.concat([train_df, test_df], axis=0)\n",
|
258 |
+
"# # df = validated_df.copy()\n",
|
259 |
+
"# print(df.info())\n",
|
260 |
+
"# # df[\"sentence\"] = df[\"prev_sentence\"].apply(lambda t: normalizer_without_batch(t))\n",
|
261 |
+
"# # df = df.dropna(subset=[\"sentence\"])\n",
|
262 |
+
"# # df[\"sentence_spell\"] = df[\"sentence\"].apply(lambda t: normalizer({\"sentence\": t}, is_spell_check=True, return_dict=False))\n",
|
263 |
+
"# df = df.reset_index(drop=True)\n",
|
264 |
+
"# print(df.info())\n",
|
265 |
+
"# df.head()"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"execution_count": 21,
|
271 |
+
"metadata": {},
|
272 |
+
"outputs": [],
|
273 |
+
"source": [
|
274 |
+
"# import torchaudio\n",
|
275 |
+
"# import librosa\n",
|
276 |
+
"# import IPython.display as ipd\n",
|
277 |
+
"# import numpy as np\n",
|
278 |
+
"\n",
|
279 |
+
"# def load_audio(path):\n",
|
280 |
+
"# speech, sr = torchaudio.load(path)\n",
|
281 |
+
"# speech = speech[0].numpy().squeeze() \n",
|
282 |
+
"# speech = librosa.resample(np.asarray(speech), sr, 16_000)\n",
|
283 |
+
" \n",
|
284 |
+
"# print(speech.shape, sr)\n",
|
285 |
+
" \n",
|
286 |
+
"# ipd.display(ipd.Audio(data=np.asarray(speech), autoplay=True, rate=16000))"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 22,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"# main_vocab = [\"ح\", \"چ\", \"ج\", \"ث\", \"ت\", \"پ\", \"ب\", \"آ\", \"ا\", \"ش\", \"س\", \"ژ\", \"ز\", \"ر\", \"ذ\", \"د\", \"خ\", \"ق\", \"ف\", \"غ\", \"ع\", \"ظ\", \"ط\", \"ض\", \"ص\", \"ی\", \"ه\", \"و\", \"ن\", \"م\", \"ل\", \"گ\", \"ک\"]\n",
|
296 |
+
"# text = \" \".join(df[\"sentence\"].values.tolist())\n",
|
297 |
+
"# vocab = list(sorted(set(text)))\n",
|
298 |
+
"\n",
|
299 |
+
"# for v in main_vocab:\n",
|
300 |
+
"# if v not in vocab:\n",
|
301 |
+
"# print(\"v\", v)\n",
|
302 |
+
"\n",
|
303 |
+
"# print(len(main_vocab), len(vocab))\n",
|
304 |
+
"# print(len(vocab), vocab)"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"execution_count": 23,
|
310 |
+
"metadata": {},
|
311 |
+
"outputs": [],
|
312 |
+
"source": [
|
313 |
+
"# import numpy as np\n",
|
314 |
+
"\n",
|
315 |
+
"\n",
|
316 |
+
"# idx = np.random.randint(0, len(df))\n",
|
317 |
+
"# # idx = 6140\n",
|
318 |
+
"# sample = df.iloc[idx]\n",
|
319 |
+
"# ipd.display(sample)\n",
|
320 |
+
"# # print(sample.iloc[idx][\"prev_sentence\"])\n",
|
321 |
+
"# print()\n",
|
322 |
+
"# print(sample[\"prev_sentence\"])\n",
|
323 |
+
"# print(sample[\"sentence\"])\n",
|
324 |
+
"# print()\n",
|
325 |
+
"# load_audio(sample[\"path\"])"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": 24,
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [],
|
333 |
+
"source": [
|
334 |
+
"# new_train_df = train_df.copy()\n",
|
335 |
+
"# new_train_df[\"_path\"] = new_train_df[\"path\"]\n",
|
336 |
+
"# new_train_df[\"path\"] = new_train_df[\"path\"].apply(lambda t: os.path.join(\"/home/m3hrdadfi/code/data/fa/dataset/clips\", t.split(\"/\")[-1]))\n",
|
337 |
+
"# print(new_train_df.info())\n",
|
338 |
+
"# new_train_df.head()"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 25,
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"# new_test_df = test_df.copy()\n",
|
348 |
+
"# new_test_df[\"_path\"] = new_test_df[\"path\"]\n",
|
349 |
+
"# new_test_df[\"path\"] = new_test_df[\"path\"].apply(lambda t: os.path.join(\"/home/m3hrdadfi/code/data/fa/dataset/clips\", t.split(\"/\")[-1]))\n",
|
350 |
+
"# print(new_test_df.info())\n",
|
351 |
+
"# new_test_df.head()"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 26,
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"# import shutil\n",
|
361 |
+
"# from tqdm import tqdm"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": 27,
|
367 |
+
"metadata": {},
|
368 |
+
"outputs": [],
|
369 |
+
"source": [
|
370 |
+
"# !mkdir -p {save_path}/clips\n",
|
371 |
+
"# !mkdir -p {save_path}/augs"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": 28,
|
377 |
+
"metadata": {},
|
378 |
+
"outputs": [],
|
379 |
+
"source": [
|
380 |
+
"# for index, row in tqdm(new_train_df.iterrows(), position=0, total=len(new_train_df)):\n",
|
381 |
+
"# shutil.copy(row[\"_path\"], row[\"path\"])"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": 29,
|
387 |
+
"metadata": {},
|
388 |
+
"outputs": [],
|
389 |
+
"source": [
|
390 |
+
"# for index, row in tqdm(new_test_df.iterrows(), position=0, total=len(new_test_df)):\n",
|
391 |
+
"# shutil.copy(row[\"_path\"], row[\"path\"])"
|
392 |
+
]
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "code",
|
396 |
+
"execution_count": 30,
|
397 |
+
"metadata": {},
|
398 |
+
"outputs": [],
|
399 |
+
"source": [
|
400 |
+
"# # aug_train_df = new_train_df.copy()\n",
|
401 |
+
"# aug_train_df = new_train_df.sample(frac=0.1)\n",
|
402 |
+
"# aug_train_df = aug_train_df.reset_index(drop=True)\n",
|
403 |
+
"# aug_train_df[\"_path\"] = aug_train_df[\"path\"]\n",
|
404 |
+
"# aug_train_df[\"path\"] = aug_train_df[\"path\"].apply(lambda t: \"/\".join(t.split('.')[:-1]).replace(\"clips\", \"augs\") + \"_aug.mp3.wav\")\n",
|
405 |
+
"# print(aug_train_df.info())\n",
|
406 |
+
"# aug_train_df.head()"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"execution_count": 31,
|
412 |
+
"metadata": {},
|
413 |
+
"outputs": [],
|
414 |
+
"source": [
|
415 |
+
"# print(aug_train_df.iloc[0][\"_path\"])\n",
|
416 |
+
"# print(aug_train_df.iloc[0][\"path\"])"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": 32,
|
422 |
+
"metadata": {},
|
423 |
+
"outputs": [],
|
424 |
+
"source": [
|
425 |
+
"# # augmentation\n",
|
426 |
+
"\n",
|
427 |
+
"# from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift, Shift, Gain\n",
|
428 |
+
"# import numpy as np\n",
|
429 |
+
"# import soundfile as sf\n",
|
430 |
+
"\n",
|
431 |
+
"# augment = Compose([\n",
|
432 |
+
"# # AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),\n",
|
433 |
+
"# # PitchShift(min_semitones=-1, max_semitones=2, p=0.2),\n",
|
434 |
+
"# # Gain(min_gain_in_db=-6, max_gain_in_db=6, p=0.8)\n",
|
435 |
+
"# AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),\n",
|
436 |
+
"# TimeStretch(min_rate=0.8, max_rate=1.25, p=0.5),\n",
|
437 |
+
"# PitchShift(min_semitones=-4, max_semitones=4, p=0.5),\n",
|
438 |
+
"# ])\n",
|
439 |
+
"\n",
|
440 |
+
"# def augmented_speech_file_to_array_fn(in_path, out_path):\n",
|
441 |
+
"# speech_array, sampling_rate = torchaudio.load(in_path)\n",
|
442 |
+
"# speech_array = speech_array.squeeze().numpy()\n",
|
443 |
+
"# speech_array = augment(samples=speech_array, sample_rate=sampling_rate)\n",
|
444 |
+
"# sf.write(out_path, speech_array, sampling_rate, \"PCM_24\")"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 33,
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [],
|
452 |
+
"source": [
|
453 |
+
"# # for index, row in tqdm(aug_train_df.iterrows(), position=0, total=len(aug_train_df)):\n",
|
454 |
+
"# # augmented_speech_file_to_array_fn(row[\"_path\"], row[\"path\"])\n",
|
455 |
+
"# !ls"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": 34,
|
461 |
+
"metadata": {},
|
462 |
+
"outputs": [],
|
463 |
+
"source": [
|
464 |
+
"# # new_train_aug_df = pd.concat([new_train_df, aug_train_df], axis=0)\n",
|
465 |
+
"# new_train_aug_df = new_train_df.copy()\n",
|
466 |
+
"# new_train_aug_df = new_train_aug_df.sample(frac=1)\n",
|
467 |
+
"# new_train_aug_df = new_train_aug_df.reset_index(drop=True)\n",
|
468 |
+
"# print(new_train_aug_df.info())\n",
|
469 |
+
"# new_train_aug_df.head()"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": 35,
|
475 |
+
"metadata": {},
|
476 |
+
"outputs": [],
|
477 |
+
"source": [
|
478 |
+
"# new_train_df.to_csv(f\"{save_path}/train_no_aug.csv\", sep=\"\\t\", encoding=\"utf-8\", index=False)\n",
|
479 |
+
"# new_train_aug_df.to_csv(f\"{save_path}/train_with_aug.csv\", sep=\"\\t\", encoding=\"utf-8\", index=False)\n",
|
480 |
+
"# new_test_df.to_csv(f\"{save_path}/test.csv\", sep=\"\\t\", encoding=\"utf-8\", index=False)"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "code",
|
485 |
+
"execution_count": 36,
|
486 |
+
"metadata": {},
|
487 |
+
"outputs": [],
|
488 |
+
"source": [
|
489 |
+
"# new_train_df.count()"
|
490 |
+
]
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": 37,
|
495 |
+
"metadata": {},
|
496 |
+
"outputs": [],
|
497 |
+
"source": [
|
498 |
+
"# new_test_df.count()"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"cell_type": "code",
|
503 |
+
"execution_count": 38,
|
504 |
+
"metadata": {},
|
505 |
+
"outputs": [],
|
506 |
+
"source": [
|
507 |
+
"# import pandas as pd\n",
|
508 |
+
"\n",
|
509 |
+
"# import os\n",
|
510 |
+
"# from tqdm import tqdm"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": 39,
|
516 |
+
"metadata": {},
|
517 |
+
"outputs": [],
|
518 |
+
"source": [
|
519 |
+
"# train_df = pd.read_csv(f\"{save_path}/train_no_aug.csv\", sep=\"\\t\")\n",
|
520 |
+
"# print(train_df.info())\n",
|
521 |
+
"# train_df.head()"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"execution_count": 40,
|
527 |
+
"metadata": {},
|
528 |
+
"outputs": [],
|
529 |
+
"source": [
|
530 |
+
"# test_df = pd.read_csv(f\"{save_path}/test.csv\", sep=\"\\t\")\n",
|
531 |
+
"# print(test_df.info())\n",
|
532 |
+
"# test_df.head()"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"cell_type": "code",
|
537 |
+
"execution_count": 41,
|
538 |
+
"metadata": {},
|
539 |
+
"outputs": [],
|
540 |
+
"source": [
|
541 |
+
"# non_existed_train = []\n",
|
542 |
+
"\n",
|
543 |
+
"# for index, row in tqdm(train_df.iterrows(), total=len(train_df), position=0):\n",
|
544 |
+
"# if not os.path.exists(row[\"path\"]):\n",
|
545 |
+
"# non_existed_train.extends(list(index))\n",
|
546 |
+
"# break"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 42,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [],
|
554 |
+
"source": [
|
555 |
+
"# import numpy as np\n",
|
556 |
+
"\n",
|
557 |
+
"\n",
|
558 |
+
"# idx = np.random.randint(0, len(train_df))\n",
|
559 |
+
"# # idx = 6140\n",
|
560 |
+
"# sample = train_df.iloc[idx]\n",
|
561 |
+
"# ipd.display(sample)\n",
|
562 |
+
"# # print(sample.iloc[idx][\"prev_sentence\"])\n",
|
563 |
+
"# print()\n",
|
564 |
+
"# print(sample[\"prev_sentence\"])\n",
|
565 |
+
"# print(sample[\"sentence\"])\n",
|
566 |
+
"# print()\n",
|
567 |
+
"# load_audio(sample[\"path\"])"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"cell_type": "code",
|
572 |
+
"execution_count": 43,
|
573 |
+
"metadata": {},
|
574 |
+
"outputs": [],
|
575 |
+
"source": [
|
576 |
+
"# train_df_half = train_df.copy()\n",
|
577 |
+
"# print(train_df_half.shape)\n",
|
578 |
+
"# train_df_half = train_df_half.dropna()\n",
|
579 |
+
"# print(train_df_half.shape)\n",
|
580 |
+
"# train_df_half = train_df_half.drop_duplicates()\n",
|
581 |
+
"# print(train_df_half.shape)\n",
|
582 |
+
"\n",
|
583 |
+
"# train_df_half = train_df_half.sample(frac=0.5)\n",
|
584 |
+
"# train_df_half = train_df_half.reset_index(drop=True)\n",
|
585 |
+
"# print(train_df_half.shape)"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 44,
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [],
|
593 |
+
"source": [
|
594 |
+
"# train_df_half.to_csv(f\"{save_path}/train_no_aug_half.csv\", sep=\"\\t\", encoding=\"utf-8\", index=False)"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": null,
|
600 |
+
"metadata": {},
|
601 |
+
"outputs": [],
|
602 |
+
"source": []
|
603 |
+
}
|
604 |
+
],
|
605 |
+
"metadata": {
|
606 |
+
"kernelspec": {
|
607 |
+
"display_name": "transformers",
|
608 |
+
"name": "transformers"
|
609 |
+
},
|
610 |
+
"language_info": {
|
611 |
+
"codemirror_mode": {
|
612 |
+
"name": "ipython",
|
613 |
+
"version": 3
|
614 |
+
},
|
615 |
+
"file_extension": ".py",
|
616 |
+
"mimetype": "text/x-python",
|
617 |
+
"name": "python",
|
618 |
+
"nbconvert_exporter": "python",
|
619 |
+
"pygments_lexer": "ipython3",
|
620 |
+
"version": "3.9.4"
|
621 |
+
},
|
622 |
+
"orig_nbformat": 2
|
623 |
+
},
|
624 |
+
"nbformat": 4,
|
625 |
+
"nbformat_minor": 2
|
626 |
+
}
|
notes/fa.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9f3c53202d7d12dfe973604737fc11b0a50c9c94b85c4cae70fcc693fe2babb4
|
3 |
-
size 7020110
|
|
|
|
|
|
|
|
src/fine-tuning/__init__.py
ADDED
File without changes
|
src/{dictionary.py → fine-tuning/dictionary.py}
RENAMED
File without changes
|
src/{normalizer.py → fine-tuning/normalizer.py}
RENAMED
File without changes
|