File size: 7,538 Bytes
c239b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from parsivar import Normalizer
from parsivar import SpellCheck
import num2fawords
import re
import string
from dictionary import dictionary_mapping, fixator_dictionary
_normalizer = Normalizer(half_space_char="\u200c", statistical_space_correction=True)
_spell = SpellCheck()
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬", 'ٔ', ",", "?",
".", "!", "-", ";", ":", '"', "“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
'ā', 'š', 'ّ', 'ْ',
]
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
chars_to_ignore = f"""[{"".join(chars_to_ignore)}]"""
zwnj = "\u200c"
silent_chars = ["ا", "د", "ذ", "ر", "ز", "و", "آ"] + [zwnj] + [" "]
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def convert_word_nums_to_text(word):
try:
word = int(word)
word = num2fawords.words(word)
except:
word = word
return word
def normalizer_at_word_level(text):
words = text.split()
_text = []
for word in words:
word = convert_word_nums_to_text(word)
word = fixator_dictionary.get(word, word)
_text.append(word)
return " ".join(_text) + " "
def finder(ss, s, starter=False):
found = []
for m in re.finditer(ss, s):
if starter:
found.append(m.start())
else:
found.append((m.start(), m.end()))
return found
def substring_replace(ss, s, start, end, stripped=True):
s_start = s[:start]
s_end = s[end:]
counter = 0
if stripped:
counter = 1 if s_start.endswith(" ") else counter
s_start = s_start.rstrip()
return s_start + ss + s_end, counter
def normalizer(
batch,
is_normalize=True,
is_spell_check=False,
return_dict=True,
filter_trivials=False,
remove_extra_space=False
):
text = batch["sentence"].lower().strip()
# Parsivar normalizer
if is_normalize:
text = _normalizer.normalize(text)
# Dictionary mapping
text = multiple_replace(text, dictionary_mapping)
text = re.sub(" +", " ", text)
# Remove specials
text = remove_special_characters(text, chars_to_ignore)
text = re.sub(" +", " ", text)
# Replace connected آ
special, pointer = "آ", int("0")
for f in sorted(finder(special, text, True)):
index = f + pointer - 1
if len(text) >= index:
if text[index] not in silent_chars:
new_text, extra_pointer = substring_replace(
f"{text[index]}{zwnj}", text, index, index + 1, stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
# Replace connected ها
pointer = int("0")
special_list = [
# "ام", "ای", "است", "ایم", "اید", "اند",
"هایمان", "هایم", "هایت", "هایش",
"هایتان", "هایشان", "هام", "هات",
"هاتان", "هامون", "هامان", "هاش",
"هاتون", "هاشان", "هاشون",
"هایی", "های", "هاس", "ها"
]
for special in special_list:
pointer = 0
text = text
for f in sorted(finder(special, text, False)):
start, end = f[0] + pointer - 1, f[1] + pointer - 1
if len(text) >= (end + 1):
if len(text) == (end + 1):
new_text, extra_pointer = substring_replace(
f"{zwnj}{special}",
text,
start + 1,
end + 1,
stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
else:
if text[end + 1] == " ":
new_text, extra_pointer = substring_replace(
f"{zwnj}{special}",
text,
start + 1,
end + 1,
stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
special, pointer = "افزار", int("0")
for f in sorted(finder(special, text, False)):
start, end = f[0] + pointer - 1, f[1] + pointer - 1
if len(text) >= (end + 1):
new_text, extra_pointer = substring_replace(f"{zwnj}{special}", text, start + 1, end + 1, stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
# Replace connected ها
pointer = int("0")
special_list = [
"ترین", "تر"
]
for special in special_list:
pointer = 0
text = text
for f in sorted(finder(special, text, False)):
start, end = f[0] + pointer - 1, f[1] + pointer - 1
if len(text) >= (end + 1):
if len(text) == (end + 1):
new_text, extra_pointer = substring_replace(
f"{zwnj}{special}",
text,
start + 1,
end + 1,
stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
else:
if text[end + 1] == " ":
new_text, extra_pointer = substring_replace(
f"{zwnj}{special}",
text,
start + 1,
end + 1,
stripped=True)
text = new_text
pointer += 1 + 1 - 1 - extra_pointer
# Parsivar spell correction
if is_spell_check:
text = _normalizer.normalize(_spell.spell_corrector(text))
# Normalizer at word level
text = normalizer_at_word_level(text)
text = re.sub(" +", " ", text)
if remove_extra_space:
text = text.strip()
else:
text = text.strip() + " "
if filter_trivials:
if not len(text) > 2:
text = None
if not return_dict:
return text
batch["sentence"] = text
return batch
if __name__ == '__main__':
input_text = "سلام بر شما که میآیید و میآموزید که بیآرآیم"
print(normalizer({"sentence": input_text}, return_dict=False))
input_text = "کتابهایمان میدانی کجاها ماههاس که کیهامون و کیهان دنبالههاشون برای بهای هستند."
print(normalizer({"sentence": input_text}, return_dict=False))
input_text = " میانافزارهای امروزی نرمافزار سخت افزار امروز نوشتافزار ها"
print(normalizer({"sentence": input_text}, return_dict=False))
input_text = "این کتاب بهترین در نوع شتر آسانتر هست"
print(normalizer({"sentence": input_text}, return_dict=False))
input_text = "سه چیز هست که از پژوهش در این زمینه آموختهام"
print(normalizer({"sentence": input_text}, return_dict=False))
|