File size: 26,041 Bytes
c239b93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import logging
import sys
import time
from dataclasses import field
from pathlib import Path
from typing import Dict, List, Optional, Union

# !/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the library models for Wav2Vec.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import numpy as np
from datasets import DatasetDict, load_dataset
from tqdm import tqdm

import flax
import jax
import jax.numpy as jnp
import librosa
import optax
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import (
    FlaxWav2Vec2ForPreTraining,
    HfArgumentParser,
    TrainingArguments,
    Wav2Vec2Config,
    Wav2Vec2FeatureExtractor,
    is_tensorboard_available,
)
from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices, _sample_negative_indices

from normalizer import normalizer

logger = logging.getLogger(__name__)


@flax.struct.dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    freeze_feature_extractor: Optional[bool] = field(
        default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
    )
    gradient_checkpointing: Optional[bool] = field(
        default=False, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
    )
    verbose_logging: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether to log verbose messages or not."},
    )
    max_gumbel_temperature: Optional[float] = field(
        default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
    )
    min_gumbel_temperature: Optional[float] = field(
        default=0.1, metadata={"help": "Minimum temperature for gumbel softmax."}
    )
    gumbel_temperature_decay: Optional[float] = field(
        default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
        },
    )


@flax.struct.dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: str = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_split_name: Optional[str] = field(
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
    validation_split_name: Optional[str] = field(
        default="validation",
        metadata={
            "help": "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
        },
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
    )
    speech_file_column: Optional[str] = field(
        default="file",
        metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_duration_in_seconds: Optional[float] = field(
        default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
    )
    pad_to_multiple_of: Optional[int] = field(
        default=1024,
        metadata={
            "help": "If set will pad the sequence to a multiple of the provided value. This is important to avoid triggering recompilations on TPU"
        },
    )


@flax.struct.dataclass
class FlaxDataCollatorForWav2Vec2Pretraining:
    """
    Data collator that will dynamically pad the inputs received and prepare masked indices
    for self-supervised pretraining.

    Args:
        model (:class:`~transformers.FlaxWav2Vec2ForPreTraining`):
            The Wav2Vec2 model used for pretraining. The data collator needs to have access
            to config and ``_get_feat_extract_output_lengths`` function for correct padding.
        feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
            The processor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        max_length (:obj:`int`, `optional`):
            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    model: FlaxWav2Vec2ForPreTraining
    feature_extractor: Wav2Vec2FeatureExtractor
    padding: Union[bool, str] = "longest"
    pad_to_multiple_of: Optional[int] = None
    max_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # reformat list to dict and set to pytorch format
        batch = self.feature_extractor.pad(
            features,
            max_length=self.max_length,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="np",
        )
        mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])

        # sample randomly masked indices
        batch["mask_time_indices"] = _compute_mask_indices(
            (batch["input_values"].shape[0], mask_indices_seq_length),
            self.model.config.mask_time_prob,
            self.model.config.mask_time_length,
            min_masks=2,
        )

        # sample indices to take for negative vectors
        batch["sampled_negative_indices"] = _sample_negative_indices(
            (batch["mask_time_indices"].shape + (self.model.config.proj_codevector_dim,)),
            self.model.config.num_negatives,
        )

        return batch


def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logging_level = logging.WARNING
    if model_args.verbose_logging:
        logging_level = logging.DEBUG
    logger.setLevel(logging_level)


def write_train_metric(summary_writer, train_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)


def write_eval_metric(summary_writer, eval_metrics, step):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
    num_samples = len(samples_idx)
    samples_to_remove = num_samples % batch_size

    if samples_to_remove != 0:
        samples_idx = samples_idx[:-samples_to_remove]
    sections_split = num_samples // batch_size
    batch_idx = np.split(samples_idx, sections_split)
    return batch_idx


def compute_contrastive_loss(
        quantized_features, transformer_features, negative_indices, mask_time_indices, logits_temp, num_negatives
):
    batch_size, sequence_length, hidden_size = quantized_features.shape

    # take negative vectors from sampled indices
    quantized_negatives = quantized_features.reshape(-1, hidden_size)[negative_indices.reshape(-1)]
    quantized_negatives = quantized_negatives.reshape(
        batch_size, sequence_length, num_negatives, hidden_size
    ).transpose(2, 0, 1, 3)

    target_features = jnp.concatenate([quantized_features[None, :], quantized_negatives], axis=0)
    loss_logits = optax.cosine_similarity(transformer_features, target_features)
    loss_logits = loss_logits / logits_temp

    neg_is_pos = (quantized_features == quantized_negatives).all(-1)
    neg_is_pos = jnp.concatenate([jnp.full((1,) + loss_logits.shape[1:], False), neg_is_pos], axis=0)

    # make sure incorrectly sampled vectors don't contribute to loss
    loss_logits = jnp.where(neg_is_pos, -1e9, loss_logits)

    predictions = loss_logits.transpose(2, 1, 0).reshape(-1, loss_logits.shape[0])
    targets = ((1 - mask_time_indices) * -100).transpose(1, 0).flatten()

    target_mask = jnp.where(targets >= 0, 1.0, 0.0)
    contrastive_loss = optax.softmax_cross_entropy(predictions, onehot(targets, predictions.shape[-1])) * target_mask

    contrastive_loss = contrastive_loss.sum()

    return contrastive_loss


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))

    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    configure_logger(model_args, training_args)

    # Downloading and loading a dataset from the hub.
    if data_args.dataset_name:

        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)

        if "validation" not in datasets.keys():
            # make sure only "validation" and "train" keys remain"
            datasets = DatasetDict()
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
        else:
            # make sure only "validation" and "train" keys remain"
            datasets = DatasetDict()
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split="validation",
                cache_dir=model_args.cache_dir,
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"{data_args.train_split_name}",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files, delimiter="\t")

    # only normalized-inputs-training is supported
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        do_normalize=True
    )

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
        return batch

    # load audio files into numpy arrays
    vectorized_datasets = datasets.map(
        prepare_dataset,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=datasets["train"].column_names
    )

    # filter audio files that are too long
    vectorized_datasets = vectorized_datasets.filter(
        lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
    )

    def normalize(batch):
        return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)

    # normalize and transform to `BatchFeatures`
    vectorized_datasets = vectorized_datasets.map(
        normalize,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        remove_columns=vectorized_datasets["train"].column_names,
    )

    # pretraining is only supported for "newer" stable layer norm architecture
    # apply_spec_augment has to be True, mask_feature_prob has to be 0.0
    config = Wav2Vec2Config.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        gradient_checkpointing=model_args.gradient_checkpointing,
    )

    if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
        raise ValueError(
            "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and ``config.feat_extract_norm='layer'"
        )

    model = FlaxWav2Vec2ForPreTraining(
        config,
        seed=training_args.seed,
        dtype=getattr(jnp, model_args.dtype)
    )

    data_collator = FlaxDataCollatorForWav2Vec2Pretraining(
        model=model,
        feature_extractor=feature_extractor,
        pad_to_multiple_of=data_args.pad_to_multiple_of
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())
    gumbel_rngs = jax.random.split(rng, jax.local_device_count())

    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()

    num_train_steps = len(vectorized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        flat_mask = {
            path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")])
            for path in flat_params
        }
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state and define training hyper-parameters
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
    num_negatives = model.config.num_negatives
    contrastive_logits_temperature = model.config.contrastive_logits_temperature
    num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
    diversity_loss_weight = model.config.diversity_loss_weight

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng, gumbel_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
        gumbel_rng, new_gumbel_rng = jax.random.split(gumbel_rng)

        def loss_fn(params):
            negative_indices = batch.pop("sampled_negative_indices")

            gumbel_temperature = jnp.clip(
                model_args.max_gumbel_temperature * model_args.gumbel_temperature_decay ** state.step,
                a_min=model_args.min_gumbel_temperature,
            )

            outputs = state.apply_fn(
                **batch,
                gumbel_temperature=gumbel_temperature,
                params=params,
                dropout_rng=dropout_rng,
                gumbel_rng=gumbel_rng,
                train=True,
            )

            contrastive_loss = compute_contrastive_loss(
                outputs.projected_quantized_states,
                outputs.projected_states,
                negative_indices,
                batch["mask_time_indices"],
                contrastive_logits_temperature,
                num_negatives,
            )

            diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
            loss = contrastive_loss + diversity_loss_weight * diversity_loss

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
        )

        return new_state, metrics, new_dropout_rng, new_gumbel_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        negative_indices = batch.pop("sampled_negative_indices")

        outputs = model(**batch, params=params, train=False)

        contrastive_loss = compute_contrastive_loss(
            outputs.projected_quantized_states,
            outputs.projected_states,
            negative_indices,
            batch["mask_time_indices"],
            contrastive_logits_temperature,
            num_negatives,
        )

        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
        loss = contrastive_loss + diversity_loss_weight * diversity_loss

        # summarize metrics
        metrics = {"loss": loss.mean(), "codevector_perplexity": outputs.codevector_perplexity}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    train_metrics = []
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        num_train_samples = len(vectorized_datasets["train"])
        train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples))
        train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)

        # Gather the indexes for creating the batch and do a training step
        for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
            samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples)
            model_inputs = shard(model_inputs.data)

            # Model forward
            state, train_metric, dropout_rngs, gumbel_rngs = p_train_step(
                state, model_inputs, dropout_rngs, gumbel_rngs
            )
            train_metrics.append(train_metric)

            cur_step = epoch * (num_train_samples // train_batch_size) + step

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
                )

                train_metrics = []

        # ======================== Evaluating ==============================
        num_eval_samples = len(vectorized_datasets["validation"])
        eval_samples_idx = jnp.arange(num_eval_samples)
        eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)

        eval_metrics = []
        for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [vectorized_datasets["validation"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples)

            # Model forward
            model_inputs = shard(model_inputs.data)
            metrics = p_eval_step(state.params, model_inputs)
            eval_metrics.append(metrics)

        # get eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # Update progress bar
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Perplexity: {eval_metrics['codevector_perplexity']})"
        )

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size)
            write_eval_metric(summary_writer, eval_metrics, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(
                training_args.output_dir,
                params=params,
                push_to_hub=training_args.push_to_hub
            )


if __name__ == "__main__":
    main()