# Tokenizer We trained our tokenizer using [sentencepiece](https://github.com/google/sentencepiece)'s unigram tokenizer. Then loaded the tokenizer as MT5TokenizerFast. ## Model We used [MT5-base](https://huggingface.co./google/mt5-base) model. ## Datasets We used [Code Search Net](https://huggingface.co./datasets/code_search_net)'s dataset and some scrapped data from internet to train the model. We maintained a list of datasets where each dataset had codes of same language. ## Plots ### Train loss ![train loss](https://i.ibb.co/x53Wm8n/train-loss.png) ### Evaluation loss ![eval loss](https://i.ibb.co/McB2jnf/eval-loss.png) ### Evaluation accuracy ![eval accuracy](https://i.ibb.co/YDGhLdn/eval-accuracy.png) ### Learning rate ![learning rate](https://i.ibb.co/CMStzWv/learning-rate.png) ## Fine tuning (WIP) We fine tuned the model with [CodeXGLUE code-to-code-trans dataset](https://huggingface.co./datasets/code_x_glue_cc_code_to_code_trans), and scrapper data.