from transformers import T5ForConditionalGeneration, T5TokenizerFast | |
t5_model = T5ForConditionalGeneration.from_pretrained('./pytorch_model') | |
tokenizer = T5TokenizerFast.from_pretrained('./') | |
text = 'বাংলার মুখ আমি দেখিয়াছি, তাই আমি পৃথিবীর রূপ খুঁজিতে যাই না' | |
tokenized = tokenizer(text, return_tensors='pt') | |
input_ids = tokenized.input_ids | |
attention_mask = tokenized.attention_mask | |
t5_model.eval() | |
beam_outputs = t5_model.generate( | |
input_ids=input_ids,attention_mask=attention_mask, | |
max_length=64, | |
early_stopping=True, | |
num_beams=10, | |
num_return_sequences=3, | |
no_repeat_ngram_size=2 | |
) | |
for beam_output in beam_outputs: | |
sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
print (sent) | |