--- base_model: facebook/wav2vec2 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: facebook/wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4 --- # facebook/wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2](https://huggingface.co./facebook/wav2vec2) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 2.0140 - Accuracy: 0.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 2.2871 | 0.195 | | 2.2933 | 1.92 | 12 | 2.2658 | 0.18 | | 2.2933 | 2.88 | 18 | 2.2214 | 0.275 | | 2.2388 | 4.0 | 25 | 2.1885 | 0.29 | | 2.1455 | 4.96 | 31 | 2.1246 | 0.38 | | 2.1455 | 5.92 | 37 | 2.1139 | 0.35 | | 2.0823 | 6.88 | 43 | 2.0462 | 0.36 | | 2.0279 | 8.0 | 50 | 2.0282 | 0.405 | | 2.0279 | 8.96 | 56 | 2.0133 | 0.405 | | 1.9928 | 9.6 | 60 | 2.0140 | 0.4 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1