--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-us_en_bs128 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3417945690672963 --- # whisper-tiny-us_en_bs128 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.8372 - Wer Ortho: 0.3399 - Wer: 0.3418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.1633 | 6.25 | 25 | 0.5503 | 0.3177 | 0.3164 | | 0.0027 | 12.5 | 50 | 0.6676 | 0.3288 | 0.3294 | | 0.0011 | 18.75 | 75 | 0.7095 | 0.3134 | 0.3182 | | 0.0012 | 25.0 | 100 | 0.7296 | 0.3196 | 0.3176 | | 0.0014 | 31.25 | 125 | 0.7460 | 0.3541 | 0.3583 | | 0.005 | 37.5 | 150 | 0.7059 | 0.4405 | 0.4610 | | 0.0009 | 43.75 | 175 | 0.7803 | 0.3924 | 0.3961 | | 0.0004 | 50.0 | 200 | 0.7996 | 0.3455 | 0.3512 | | 0.0001 | 56.25 | 225 | 0.8074 | 0.3411 | 0.3442 | | 0.0001 | 62.5 | 250 | 0.8146 | 0.3424 | 0.3459 | | 0.0001 | 68.75 | 275 | 0.8197 | 0.3430 | 0.3459 | | 0.0001 | 75.0 | 300 | 0.8239 | 0.3399 | 0.3424 | | 0.0001 | 81.25 | 325 | 0.8274 | 0.3374 | 0.3400 | | 0.0001 | 87.5 | 350 | 0.8303 | 0.3356 | 0.3383 | | 0.0001 | 93.75 | 375 | 0.8324 | 0.3368 | 0.3400 | | 0.0001 | 100.0 | 400 | 0.8341 | 0.3368 | 0.3388 | | 0.0001 | 106.25 | 425 | 0.8354 | 0.3405 | 0.3424 | | 0.0001 | 112.5 | 450 | 0.8364 | 0.3399 | 0.3418 | | 0.0001 | 118.75 | 475 | 0.8371 | 0.3399 | 0.3418 | | 0.0001 | 125.0 | 500 | 0.8372 | 0.3399 | 0.3418 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3