--- license: apache-2.0 library_name: transformers base_model: - nbeerbower/flammen15-mistral-7B datasets: - jondurbin/gutenberg-dpo-v0.1 model-index: - name: flammen15-gutenberg-DPO-v1-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 47.98 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.67 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.72 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.59 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 12.53 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.29 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B name: Open LLM Leaderboard --- ![image/png](https://huggingface.co./nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png) # flammen15-gutenberg-DPO-v1-7B A Mistral 7B LLM built from merging pretrained models and finetuning on [Jon Durbin](https://huggingface.co./jondurbin)'s [Gutenberg DPO set](https://huggingface.co./datasets/jondurbin/gutenberg-dpo-v0.1). Flammen specializes in exceptional character roleplay, creative writing, and general intelligence ### Method Finetuned using an A100 on Google Colab. (plz give more gpu) [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co./mlabonne) ### Configuration LoRA, model, and training settings: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) model.config.use_cache = False # Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) # Training arguments training_args = TrainingArguments( per_device_train_batch_size=2, gradient_accumulation_steps=2, gradient_checkpointing=True, learning_rate=2e-5, lr_scheduler_type="cosine", max_steps=200, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, force_use_ref_model=True ) # Fine-tune model with DPO dpo_trainer.train() ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_flammenai__flammen15-gutenberg-DPO-v1-7B) | Metric |Value| |-------------------|----:| |Avg. |21.46| |IFEval (0-Shot) |47.98| |BBH (3-Shot) |32.67| |MATH Lvl 5 (4-Shot)| 6.72| |GPQA (0-shot) | 4.59| |MuSR (0-shot) |12.53| |MMLU-PRO (5-shot) |24.29|