nbeerbower
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,7 @@ base_model:
|
|
5 |
- nbeerbower/Mahou-1.2a-mistral-7B
|
6 |
datasets:
|
7 |
- flammenai/MahouMix-v1
|
|
|
8 |
---
|
9 |
![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png)
|
10 |
|
@@ -43,6 +44,64 @@ This model has been trained to use ChatML format.
|
|
43 |
|
44 |
### Method
|
45 |
|
46 |
-
DPO finetuned
|
47 |
|
48 |
-
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- nbeerbower/Mahou-1.2a-mistral-7B
|
6 |
datasets:
|
7 |
- flammenai/MahouMix-v1
|
8 |
+
- flammenai/FlameMix-DPO-v1
|
9 |
---
|
10 |
![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png)
|
11 |
|
|
|
44 |
|
45 |
### Method
|
46 |
|
47 |
+
DPO finetuned using an A100 on Google Colab.
|
48 |
|
49 |
+
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
|
50 |
+
|
51 |
+
### Configuration
|
52 |
+
|
53 |
+
LoRA, model, and training settings:
|
54 |
+
|
55 |
+
```python
|
56 |
+
# LoRA configuration
|
57 |
+
peft_config = LoraConfig(
|
58 |
+
r=16,
|
59 |
+
lora_alpha=16,
|
60 |
+
lora_dropout=0.05,
|
61 |
+
bias="none",
|
62 |
+
task_type="CAUSAL_LM",
|
63 |
+
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
|
64 |
+
)
|
65 |
+
# Model to fine-tune
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
model_name,
|
68 |
+
torch_dtype=torch.bfloat16,
|
69 |
+
load_in_4bit=True
|
70 |
+
)
|
71 |
+
model.config.use_cache = False
|
72 |
+
# Reference model
|
73 |
+
ref_model = AutoModelForCausalLM.from_pretrained(
|
74 |
+
model_name,
|
75 |
+
torch_dtype=torch.bfloat16,
|
76 |
+
load_in_4bit=True
|
77 |
+
)
|
78 |
+
# Training arguments
|
79 |
+
training_args = TrainingArguments(
|
80 |
+
per_device_train_batch_size=4,
|
81 |
+
gradient_accumulation_steps=4,
|
82 |
+
gradient_checkpointing=True,
|
83 |
+
learning_rate=5e-5,
|
84 |
+
lr_scheduler_type="cosine",
|
85 |
+
max_steps=2000,
|
86 |
+
save_strategy="no",
|
87 |
+
logging_steps=1,
|
88 |
+
output_dir=new_model,
|
89 |
+
optim="paged_adamw_32bit",
|
90 |
+
warmup_steps=100,
|
91 |
+
bf16=True,
|
92 |
+
report_to="wandb",
|
93 |
+
)
|
94 |
+
# Create DPO trainer
|
95 |
+
dpo_trainer = DPOTrainer(
|
96 |
+
model,
|
97 |
+
ref_model,
|
98 |
+
args=training_args,
|
99 |
+
train_dataset=dataset,
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
peft_config=peft_config,
|
102 |
+
beta=0.1,
|
103 |
+
force_use_ref_model=True
|
104 |
+
)
|
105 |
+
# Fine-tune model with DPO
|
106 |
+
dpo_trainer.train()
|
107 |
+
```
|