stefan-it commited on
Commit
c2e7c32
1 Parent(s): b2605be

readme: update model card

Browse files
Files changed (1) hide show
  1. README.md +9 -10
README.md CHANGED
@@ -3,10 +3,10 @@ tags:
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
- language:
7
- - en
8
- - de
9
- - fr
10
  - it
11
  - nl
12
  - pl
@@ -26,7 +26,7 @@ widget:
26
 
27
  This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).
28
 
29
- F1-Score: **98,47** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
30
 
31
  Predicts universal POS tags:
32
 
@@ -94,14 +94,14 @@ Token[6]: "say" → VERB (0.9998)
94
  Token[7]: "." → PUNCT (1.0)
95
  ```
96
 
97
- So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".
98
 
99
 
100
  ---
101
 
102
  ### Training: Script to train this model
103
 
104
- The following Flair script was used to train this model:
105
 
106
  ```python
107
  from flair.data import MultiCorpus
@@ -129,11 +129,10 @@ corpus = MultiCorpus([
129
  tag_type = 'upos'
130
 
131
  # 3. make the tag dictionary from the corpus
132
- tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
133
 
134
  # 4. initialize each embedding we use
135
  embedding_types = [
136
-
137
  # contextual string embeddings, forward
138
  FlairEmbeddings('multi-forward'),
139
 
@@ -141,7 +140,7 @@ embedding_types = [
141
  FlairEmbeddings('multi-backward'),
142
  ]
143
 
144
- # embedding stack consists of Flair and GloVe embeddings
145
  embeddings = StackedEmbeddings(embeddings=embedding_types)
146
 
147
  # 5. initialize sequence tagger
 
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
+ language:
7
+ - en
8
+ - de
9
+ - fr
10
  - it
11
  - nl
12
  - pl
 
26
 
27
  This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).
28
 
29
+ F1-Score: **96.87** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
30
 
31
  Predicts universal POS tags:
32
 
 
94
  Token[7]: "." → PUNCT (1.0)
95
  ```
96
 
97
+ So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".
98
 
99
 
100
  ---
101
 
102
  ### Training: Script to train this model
103
 
104
+ The following Flair script was used to train this model:
105
 
106
  ```python
107
  from flair.data import MultiCorpus
 
129
  tag_type = 'upos'
130
 
131
  # 3. make the tag dictionary from the corpus
132
+ tag_dictionary = corpus.make_label_dictionary(label_type=tag_type)
133
 
134
  # 4. initialize each embedding we use
135
  embedding_types = [
 
136
  # contextual string embeddings, forward
137
  FlairEmbeddings('multi-forward'),
138
 
 
140
  FlairEmbeddings('multi-backward'),
141
  ]
142
 
143
+ # embedding stack consists of Flair embeddings
144
  embeddings = StackedEmbeddings(embeddings=embedding_types)
145
 
146
  # 5. initialize sequence tagger