initial model commit
Browse files- README.md +145 -0
- loss.tsv +151 -0
- pytorch_model.bin +3 -0
- training.log +0 -0
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- conll2003
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## English NER in Flair (fast model)
|
13 |
+
|
14 |
+
This is the fast 4-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **92,92** (corrected CoNLL-03)
|
17 |
+
|
18 |
+
Predicts 4 tags:
|
19 |
+
|
20 |
+
| **tag** | **meaning** |
|
21 |
+
|---------------------------------|-----------|
|
22 |
+
| PER | person name |
|
23 |
+
| LOC | location name |
|
24 |
+
| ORG | organization name |
|
25 |
+
| MISC | other name |
|
26 |
+
|
27 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
### Demo: How to use in Flair
|
32 |
+
|
33 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
34 |
+
|
35 |
+
```python
|
36 |
+
from flair.data import Sentence
|
37 |
+
from flair.models import SequenceTagger
|
38 |
+
|
39 |
+
# load tagger
|
40 |
+
tagger = SequenceTagger.load("flair/ner-english-fast")
|
41 |
+
|
42 |
+
# make example sentence
|
43 |
+
sentence = Sentence("George Washington went to Washington")
|
44 |
+
|
45 |
+
# predict NER tags
|
46 |
+
tagger.predict(sentence)
|
47 |
+
|
48 |
+
# print sentence
|
49 |
+
print(sentence)
|
50 |
+
|
51 |
+
# print predicted NER spans
|
52 |
+
print('The following NER tags are found:')
|
53 |
+
# iterate over entities and print
|
54 |
+
for entity in sentence.get_spans('ner'):
|
55 |
+
print(entity)
|
56 |
+
|
57 |
+
```
|
58 |
+
|
59 |
+
This yields the following output:
|
60 |
+
```
|
61 |
+
Span [1,2]: "George Washington" [− Labels: PER (0.9968)]
|
62 |
+
Span [5]: "Washington" [− Labels: LOC (0.9994)]
|
63 |
+
```
|
64 |
+
|
65 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*".
|
66 |
+
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
### Training: Script to train this model
|
71 |
+
|
72 |
+
The following Flair script was used to train this model:
|
73 |
+
|
74 |
+
```python
|
75 |
+
from flair.data import Corpus
|
76 |
+
from flair.datasets import CONLL_03
|
77 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
78 |
+
|
79 |
+
# 1. get the corpus
|
80 |
+
corpus: Corpus = CONLL_03()
|
81 |
+
|
82 |
+
# 2. what tag do we want to predict?
|
83 |
+
tag_type = 'ner'
|
84 |
+
|
85 |
+
# 3. make the tag dictionary from the corpus
|
86 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
87 |
+
|
88 |
+
# 4. initialize each embedding we use
|
89 |
+
embedding_types = [
|
90 |
+
|
91 |
+
# GloVe embeddings
|
92 |
+
WordEmbeddings('glove'),
|
93 |
+
|
94 |
+
# contextual string embeddings, forward
|
95 |
+
FlairEmbeddings('news-forward'),
|
96 |
+
|
97 |
+
# contextual string embeddings, backward
|
98 |
+
FlairEmbeddings('news-backward'),
|
99 |
+
]
|
100 |
+
|
101 |
+
# embedding stack consists of Flair and GloVe embeddings
|
102 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
103 |
+
|
104 |
+
# 5. initialize sequence tagger
|
105 |
+
from flair.models import SequenceTagger
|
106 |
+
|
107 |
+
tagger = SequenceTagger(hidden_size=256,
|
108 |
+
embeddings=embeddings,
|
109 |
+
tag_dictionary=tag_dictionary,
|
110 |
+
tag_type=tag_type)
|
111 |
+
|
112 |
+
# 6. initialize trainer
|
113 |
+
from flair.trainers import ModelTrainer
|
114 |
+
|
115 |
+
trainer = ModelTrainer(tagger, corpus)
|
116 |
+
|
117 |
+
# 7. run training
|
118 |
+
trainer.train('resources/taggers/ner-english',
|
119 |
+
train_with_dev=True,
|
120 |
+
max_epochs=150)
|
121 |
+
```
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
---
|
126 |
+
|
127 |
+
### Cite
|
128 |
+
|
129 |
+
Please cite the following paper when using this model.
|
130 |
+
|
131 |
+
```
|
132 |
+
@inproceedings{akbik2018coling,
|
133 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
134 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
135 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
136 |
+
pages = {1638--1649},
|
137 |
+
year = {2018}
|
138 |
+
}
|
139 |
+
```
|
140 |
+
|
141 |
+
---
|
142 |
+
|
143 |
+
### Issues?
|
144 |
+
|
145 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 21:27:37 0 0.1000 3.576245712941583
|
3 |
+
2 21:29:01 0 0.1000 1.6267465572285502
|
4 |
+
3 21:30:26 0 0.1000 1.2932199398645117
|
5 |
+
4 21:31:51 0 0.1000 1.1177818077274515
|
6 |
+
5 21:33:15 0 0.1000 1.0296866451449032
|
7 |
+
6 21:34:40 0 0.1000 0.9302731227554097
|
8 |
+
7 21:36:05 0 0.1000 0.8873416783783254
|
9 |
+
8 21:37:30 0 0.1000 0.8345710260769988
|
10 |
+
9 21:38:55 0 0.1000 0.8028050488969193
|
11 |
+
10 21:40:19 0 0.1000 0.769371804132869
|
12 |
+
11 21:41:44 0 0.1000 0.7434782063989323
|
13 |
+
12 21:43:09 0 0.1000 0.7134135925694357
|
14 |
+
13 21:44:35 0 0.1000 0.697478834633963
|
15 |
+
14 21:46:00 0 0.1000 0.654981232660858
|
16 |
+
15 21:47:25 0 0.1000 0.6490681288363058
|
17 |
+
16 21:48:51 0 0.1000 0.6350203718801465
|
18 |
+
17 21:50:16 0 0.1000 0.6019481727735528
|
19 |
+
18 21:51:41 0 0.1000 0.5960373881779895
|
20 |
+
19 21:53:05 0 0.1000 0.571467437958227
|
21 |
+
20 21:54:30 0 0.1000 0.5631542286682355
|
22 |
+
21 21:55:56 0 0.1000 0.5591391156887329
|
23 |
+
22 21:57:21 0 0.1000 0.5469877312926552
|
24 |
+
23 21:58:46 0 0.1000 0.543492383406132
|
25 |
+
24 22:00:10 0 0.1000 0.5150289349493724
|
26 |
+
25 22:01:35 1 0.1000 0.5185878202554923
|
27 |
+
26 22:03:00 0 0.1000 0.5032382932597701
|
28 |
+
27 22:04:26 1 0.1000 0.5042508806844678
|
29 |
+
28 22:05:51 0 0.1000 0.48771740151922915
|
30 |
+
29 22:07:17 0 0.1000 0.47727425799622564
|
31 |
+
30 22:08:42 1 0.1000 0.4816816206549919
|
32 |
+
31 22:10:06 0 0.1000 0.46041105548509315
|
33 |
+
32 22:11:46 1 0.1000 0.4666691600474753
|
34 |
+
33 22:13:11 0 0.1000 0.4550447771915152
|
35 |
+
34 22:14:36 0 0.1000 0.4482554853716983
|
36 |
+
35 22:16:00 0 0.1000 0.4392374910980086
|
37 |
+
36 22:17:26 1 0.1000 0.44741923635519004
|
38 |
+
37 22:18:50 0 0.1000 0.4324368980206266
|
39 |
+
38 22:20:15 0 0.1000 0.42393419299793395
|
40 |
+
39 22:21:41 1 0.1000 0.4377899808644117
|
41 |
+
40 22:23:06 0 0.1000 0.40397032364448415
|
42 |
+
41 22:24:32 1 0.1000 0.4180835625274649
|
43 |
+
42 22:25:59 2 0.1000 0.40589749664539776
|
44 |
+
43 22:27:43 3 0.1000 0.4139155642707137
|
45 |
+
44 22:29:08 0 0.1000 0.40055191476793983
|
46 |
+
45 22:30:33 0 0.1000 0.3847549316013538
|
47 |
+
46 22:31:59 1 0.1000 0.39164391398146936
|
48 |
+
47 22:33:24 0 0.1000 0.378595719444035
|
49 |
+
48 22:34:49 0 0.1000 0.37545035072142563
|
50 |
+
49 22:36:15 1 0.1000 0.37854261922685406
|
51 |
+
50 22:37:39 0 0.1000 0.3668022963065135
|
52 |
+
51 22:39:04 0 0.1000 0.3653561896821366
|
53 |
+
52 22:40:29 1 0.1000 0.36685169342009327
|
54 |
+
53 22:41:55 0 0.1000 0.3547235012431688
|
55 |
+
54 22:43:19 1 0.1000 0.35747438044393365
|
56 |
+
55 22:44:44 2 0.1000 0.36117520110233675
|
57 |
+
56 22:46:09 0 0.1000 0.3506846820251851
|
58 |
+
57 22:47:35 0 0.1000 0.34869071834166593
|
59 |
+
58 22:49:01 1 0.1000 0.34916296806422215
|
60 |
+
59 22:50:26 0 0.1000 0.3443586528065461
|
61 |
+
60 22:51:50 1 0.1000 0.34437141102986246
|
62 |
+
61 22:53:15 2 0.1000 0.346735600452823
|
63 |
+
62 22:54:40 0 0.1000 0.3406031290894445
|
64 |
+
63 22:56:05 0 0.1000 0.3351760045448436
|
65 |
+
64 22:57:29 0 0.1000 0.3322265410112052
|
66 |
+
65 22:58:53 0 0.1000 0.32590263230796856
|
67 |
+
66 23:00:18 0 0.1000 0.31927544255799883
|
68 |
+
67 23:01:43 1 0.1000 0.3250151945018693
|
69 |
+
68 23:03:08 2 0.1000 0.32256935213845744
|
70 |
+
69 23:04:33 3 0.1000 0.3210709377463105
|
71 |
+
70 23:05:58 4 0.1000 0.32127140860863124
|
72 |
+
71 23:07:25 0 0.0500 0.30183341349416143
|
73 |
+
72 23:09:15 0 0.0500 0.2842321318774661
|
74 |
+
73 23:10:40 1 0.0500 0.2871976368412187
|
75 |
+
74 23:12:05 0 0.0500 0.2702093680825415
|
76 |
+
75 23:13:29 1 0.0500 0.27023764628964136
|
77 |
+
76 23:14:55 0 0.0500 0.26883385820856576
|
78 |
+
77 23:16:21 0 0.0500 0.26329286245605615
|
79 |
+
78 23:17:46 0 0.0500 0.2628642472002325
|
80 |
+
79 23:19:11 0 0.0500 0.259990004138856
|
81 |
+
80 23:20:36 1 0.0500 0.27014149534457094
|
82 |
+
81 23:22:01 0 0.0500 0.2593999018869068
|
83 |
+
82 23:23:26 0 0.0500 0.2551785586283931
|
84 |
+
83 23:24:51 0 0.0500 0.2534079396319163
|
85 |
+
84 23:26:15 1 0.0500 0.2551872474671919
|
86 |
+
85 23:27:40 2 0.0500 0.2594162785224145
|
87 |
+
86 23:29:07 0 0.0500 0.2524074929990346
|
88 |
+
87 23:30:32 0 0.0500 0.25090720037682146
|
89 |
+
88 23:31:58 0 0.0500 0.23916956306069712
|
90 |
+
89 23:33:22 0 0.0500 0.2356912124241832
|
91 |
+
90 23:34:47 1 0.0500 0.24508511117081852
|
92 |
+
91 23:36:11 2 0.0500 0.24216246373857123
|
93 |
+
92 23:37:37 3 0.0500 0.23845135922767693
|
94 |
+
93 23:39:02 4 0.0500 0.23764705532996716
|
95 |
+
94 23:40:27 1 0.0250 0.24339046411782125
|
96 |
+
95 23:41:51 0 0.0250 0.2290070934716282
|
97 |
+
96 23:43:16 0 0.0250 0.2265663307065828
|
98 |
+
97 23:44:41 1 0.0250 0.22918056114282034
|
99 |
+
98 23:46:06 0 0.0250 0.2230998661982108
|
100 |
+
99 23:47:30 0 0.0250 0.21604776231548453
|
101 |
+
100 23:48:56 1 0.0250 0.23747224881773507
|
102 |
+
101 23:50:20 2 0.0250 0.21889492183263543
|
103 |
+
102 23:51:44 0 0.0250 0.2143383389220962
|
104 |
+
103 23:53:08 1 0.0250 0.21810815311213838
|
105 |
+
104 23:54:31 2 0.0250 0.21440149303761463
|
106 |
+
105 23:55:54 0 0.0250 0.21424433980372887
|
107 |
+
106 23:57:18 1 0.0250 0.2152267113988158
|
108 |
+
107 23:58:41 0 0.0250 0.2141137710194799
|
109 |
+
108 00:00:04 0 0.0250 0.21356280777556233
|
110 |
+
109 00:01:27 1 0.0250 0.22050891868487188
|
111 |
+
110 00:02:50 2 0.0250 0.21593614047558246
|
112 |
+
111 00:04:13 0 0.0250 0.21179587707583664
|
113 |
+
112 00:05:35 0 0.0250 0.20590584845388238
|
114 |
+
113 00:07:03 1 0.0250 0.20764590038245992
|
115 |
+
114 00:08:37 0 0.0250 0.2053749050143399
|
116 |
+
115 00:10:00 1 0.0250 0.20565480036260206
|
117 |
+
116 00:11:23 2 0.0250 0.20719853168518482
|
118 |
+
117 00:12:45 3 0.0250 0.20710589055302023
|
119 |
+
118 00:14:07 0 0.0250 0.19874572183323813
|
120 |
+
119 00:15:30 1 0.0250 0.21330269343585154
|
121 |
+
120 00:16:52 2 0.0250 0.20283179949450342
|
122 |
+
121 00:18:15 3 0.0250 0.2028056960081375
|
123 |
+
122 00:19:37 4 0.0250 0.20502184220601485
|
124 |
+
123 00:20:59 0 0.0125 0.1984874309052395
|
125 |
+
124 00:22:22 0 0.0125 0.19242043826210348
|
126 |
+
125 00:23:44 1 0.0125 0.20257633792448648
|
127 |
+
126 00:25:05 2 0.0125 0.19872382566144195
|
128 |
+
127 00:26:28 3 0.0125 0.19759908735846418
|
129 |
+
128 00:27:51 4 0.0125 0.20143914043526107
|
130 |
+
129 00:29:15 1 0.0063 0.19428333055369462
|
131 |
+
130 00:30:37 2 0.0063 0.19641075125317783
|
132 |
+
131 00:31:59 3 0.0063 0.20426463074039056
|
133 |
+
132 00:33:22 4 0.0063 0.1924995852374955
|
134 |
+
133 00:34:44 0 0.0031 0.18798776621682733
|
135 |
+
134 00:36:06 1 0.0031 0.19395236284295214
|
136 |
+
135 00:37:28 2 0.0031 0.19617622008523608
|
137 |
+
136 00:38:51 3 0.0031 0.1928124738314861
|
138 |
+
137 00:40:13 4 0.0031 0.20205567409343358
|
139 |
+
138 00:41:35 1 0.0016 0.19410402266473709
|
140 |
+
139 00:42:58 2 0.0016 0.1933639193590306
|
141 |
+
140 00:44:20 3 0.0016 0.1959089887670324
|
142 |
+
141 00:45:43 4 0.0016 0.19630460231270216
|
143 |
+
142 00:47:06 1 0.0008 0.19898560986252903
|
144 |
+
143 00:48:32 2 0.0008 0.19213544053933287
|
145 |
+
144 00:49:56 3 0.0008 0.18811244633095928
|
146 |
+
145 00:51:18 4 0.0008 0.1902414702256269
|
147 |
+
146 00:52:41 1 0.0004 0.189671358352975
|
148 |
+
147 00:54:03 0 0.0004 0.1872933999741379
|
149 |
+
148 00:55:25 1 0.0004 0.19926253187505505
|
150 |
+
149 00:56:48 2 0.0004 0.19951951173664648
|
151 |
+
150 00:58:10 0 0.0004 0.1853659376855704
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e5f0b76cd61ac10b332ed01d131c7fba58cfa93caf4736f09747b2dc1533399
|
3 |
+
size 256731629
|
training.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|