fishbone64
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,3691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Alibaba-NLP/gte-Qwen2-7B-instruct
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- mteb
|
6 |
+
- sentence-transformers
|
7 |
+
- transformers
|
8 |
+
- Qwen2
|
9 |
+
- sentence-similarity
|
10 |
+
- llama-cpp
|
11 |
+
- gguf-my-repo
|
12 |
+
model-index:
|
13 |
+
- name: gte-qwen2-7B-instruct
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: Classification
|
17 |
+
dataset:
|
18 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
19 |
+
type: mteb/amazon_counterfactual
|
20 |
+
config: en
|
21 |
+
split: test
|
22 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
23 |
+
metrics:
|
24 |
+
- type: accuracy
|
25 |
+
value: 91.31343283582089
|
26 |
+
- type: ap
|
27 |
+
value: 67.64251402604096
|
28 |
+
- type: f1
|
29 |
+
value: 87.53372530755692
|
30 |
+
- task:
|
31 |
+
type: Classification
|
32 |
+
dataset:
|
33 |
+
name: MTEB AmazonPolarityClassification
|
34 |
+
type: mteb/amazon_polarity
|
35 |
+
config: default
|
36 |
+
split: test
|
37 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
38 |
+
metrics:
|
39 |
+
- type: accuracy
|
40 |
+
value: 97.497825
|
41 |
+
- type: ap
|
42 |
+
value: 96.30329547047529
|
43 |
+
- type: f1
|
44 |
+
value: 97.49769793778039
|
45 |
+
- task:
|
46 |
+
type: Classification
|
47 |
+
dataset:
|
48 |
+
name: MTEB AmazonReviewsClassification (en)
|
49 |
+
type: mteb/amazon_reviews_multi
|
50 |
+
config: en
|
51 |
+
split: test
|
52 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
53 |
+
metrics:
|
54 |
+
- type: accuracy
|
55 |
+
value: 62.564
|
56 |
+
- type: f1
|
57 |
+
value: 60.975777935041066
|
58 |
+
- task:
|
59 |
+
type: Retrieval
|
60 |
+
dataset:
|
61 |
+
name: MTEB ArguAna
|
62 |
+
type: mteb/arguana
|
63 |
+
config: default
|
64 |
+
split: test
|
65 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
66 |
+
metrics:
|
67 |
+
- type: map_at_1
|
68 |
+
value: 36.486000000000004
|
69 |
+
- type: map_at_10
|
70 |
+
value: 54.842
|
71 |
+
- type: map_at_100
|
72 |
+
value: 55.206999999999994
|
73 |
+
- type: map_at_1000
|
74 |
+
value: 55.206999999999994
|
75 |
+
- type: map_at_3
|
76 |
+
value: 49.893
|
77 |
+
- type: map_at_5
|
78 |
+
value: 53.105000000000004
|
79 |
+
- type: mrr_at_1
|
80 |
+
value: 37.34
|
81 |
+
- type: mrr_at_10
|
82 |
+
value: 55.143
|
83 |
+
- type: mrr_at_100
|
84 |
+
value: 55.509
|
85 |
+
- type: mrr_at_1000
|
86 |
+
value: 55.509
|
87 |
+
- type: mrr_at_3
|
88 |
+
value: 50.212999999999994
|
89 |
+
- type: mrr_at_5
|
90 |
+
value: 53.432
|
91 |
+
- type: ndcg_at_1
|
92 |
+
value: 36.486000000000004
|
93 |
+
- type: ndcg_at_10
|
94 |
+
value: 64.273
|
95 |
+
- type: ndcg_at_100
|
96 |
+
value: 65.66199999999999
|
97 |
+
- type: ndcg_at_1000
|
98 |
+
value: 65.66199999999999
|
99 |
+
- type: ndcg_at_3
|
100 |
+
value: 54.352999999999994
|
101 |
+
- type: ndcg_at_5
|
102 |
+
value: 60.131
|
103 |
+
- type: precision_at_1
|
104 |
+
value: 36.486000000000004
|
105 |
+
- type: precision_at_10
|
106 |
+
value: 9.395000000000001
|
107 |
+
- type: precision_at_100
|
108 |
+
value: 0.996
|
109 |
+
- type: precision_at_1000
|
110 |
+
value: 0.1
|
111 |
+
- type: precision_at_3
|
112 |
+
value: 22.428
|
113 |
+
- type: precision_at_5
|
114 |
+
value: 16.259
|
115 |
+
- type: recall_at_1
|
116 |
+
value: 36.486000000000004
|
117 |
+
- type: recall_at_10
|
118 |
+
value: 93.95400000000001
|
119 |
+
- type: recall_at_100
|
120 |
+
value: 99.644
|
121 |
+
- type: recall_at_1000
|
122 |
+
value: 99.644
|
123 |
+
- type: recall_at_3
|
124 |
+
value: 67.283
|
125 |
+
- type: recall_at_5
|
126 |
+
value: 81.294
|
127 |
+
- task:
|
128 |
+
type: Clustering
|
129 |
+
dataset:
|
130 |
+
name: MTEB ArxivClusteringP2P
|
131 |
+
type: mteb/arxiv-clustering-p2p
|
132 |
+
config: default
|
133 |
+
split: test
|
134 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
135 |
+
metrics:
|
136 |
+
- type: v_measure
|
137 |
+
value: 56.461169803700564
|
138 |
+
- task:
|
139 |
+
type: Clustering
|
140 |
+
dataset:
|
141 |
+
name: MTEB ArxivClusteringS2S
|
142 |
+
type: mteb/arxiv-clustering-s2s
|
143 |
+
config: default
|
144 |
+
split: test
|
145 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
146 |
+
metrics:
|
147 |
+
- type: v_measure
|
148 |
+
value: 51.73600434466286
|
149 |
+
- task:
|
150 |
+
type: Reranking
|
151 |
+
dataset:
|
152 |
+
name: MTEB AskUbuntuDupQuestions
|
153 |
+
type: mteb/askubuntudupquestions-reranking
|
154 |
+
config: default
|
155 |
+
split: test
|
156 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
157 |
+
metrics:
|
158 |
+
- type: map
|
159 |
+
value: 67.57827065898053
|
160 |
+
- type: mrr
|
161 |
+
value: 79.08136569493911
|
162 |
+
- task:
|
163 |
+
type: STS
|
164 |
+
dataset:
|
165 |
+
name: MTEB BIOSSES
|
166 |
+
type: mteb/biosses-sts
|
167 |
+
config: default
|
168 |
+
split: test
|
169 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
170 |
+
metrics:
|
171 |
+
- type: cos_sim_pearson
|
172 |
+
value: 83.53324575999243
|
173 |
+
- type: cos_sim_spearman
|
174 |
+
value: 81.37173362822374
|
175 |
+
- type: euclidean_pearson
|
176 |
+
value: 82.19243335103444
|
177 |
+
- type: euclidean_spearman
|
178 |
+
value: 81.33679307304334
|
179 |
+
- type: manhattan_pearson
|
180 |
+
value: 82.38752665975699
|
181 |
+
- type: manhattan_spearman
|
182 |
+
value: 81.31510583189689
|
183 |
+
- task:
|
184 |
+
type: Classification
|
185 |
+
dataset:
|
186 |
+
name: MTEB Banking77Classification
|
187 |
+
type: mteb/banking77
|
188 |
+
config: default
|
189 |
+
split: test
|
190 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
191 |
+
metrics:
|
192 |
+
- type: accuracy
|
193 |
+
value: 87.56818181818181
|
194 |
+
- type: f1
|
195 |
+
value: 87.25826722019875
|
196 |
+
- task:
|
197 |
+
type: Clustering
|
198 |
+
dataset:
|
199 |
+
name: MTEB BiorxivClusteringP2P
|
200 |
+
type: mteb/biorxiv-clustering-p2p
|
201 |
+
config: default
|
202 |
+
split: test
|
203 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
204 |
+
metrics:
|
205 |
+
- type: v_measure
|
206 |
+
value: 50.09239610327673
|
207 |
+
- task:
|
208 |
+
type: Clustering
|
209 |
+
dataset:
|
210 |
+
name: MTEB BiorxivClusteringS2S
|
211 |
+
type: mteb/biorxiv-clustering-s2s
|
212 |
+
config: default
|
213 |
+
split: test
|
214 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
215 |
+
metrics:
|
216 |
+
- type: v_measure
|
217 |
+
value: 46.64733054606282
|
218 |
+
- task:
|
219 |
+
type: Retrieval
|
220 |
+
dataset:
|
221 |
+
name: MTEB CQADupstackAndroidRetrieval
|
222 |
+
type: BeIR/cqadupstack
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
226 |
+
metrics:
|
227 |
+
- type: map_at_1
|
228 |
+
value: 33.997
|
229 |
+
- type: map_at_10
|
230 |
+
value: 48.176
|
231 |
+
- type: map_at_100
|
232 |
+
value: 49.82
|
233 |
+
- type: map_at_1000
|
234 |
+
value: 49.924
|
235 |
+
- type: map_at_3
|
236 |
+
value: 43.626
|
237 |
+
- type: map_at_5
|
238 |
+
value: 46.275
|
239 |
+
- type: mrr_at_1
|
240 |
+
value: 42.059999999999995
|
241 |
+
- type: mrr_at_10
|
242 |
+
value: 53.726
|
243 |
+
- type: mrr_at_100
|
244 |
+
value: 54.398
|
245 |
+
- type: mrr_at_1000
|
246 |
+
value: 54.416
|
247 |
+
- type: mrr_at_3
|
248 |
+
value: 50.714999999999996
|
249 |
+
- type: mrr_at_5
|
250 |
+
value: 52.639
|
251 |
+
- type: ndcg_at_1
|
252 |
+
value: 42.059999999999995
|
253 |
+
- type: ndcg_at_10
|
254 |
+
value: 55.574999999999996
|
255 |
+
- type: ndcg_at_100
|
256 |
+
value: 60.744
|
257 |
+
- type: ndcg_at_1000
|
258 |
+
value: 61.85699999999999
|
259 |
+
- type: ndcg_at_3
|
260 |
+
value: 49.363
|
261 |
+
- type: ndcg_at_5
|
262 |
+
value: 52.44
|
263 |
+
- type: precision_at_1
|
264 |
+
value: 42.059999999999995
|
265 |
+
- type: precision_at_10
|
266 |
+
value: 11.101999999999999
|
267 |
+
- type: precision_at_100
|
268 |
+
value: 1.73
|
269 |
+
- type: precision_at_1000
|
270 |
+
value: 0.218
|
271 |
+
- type: precision_at_3
|
272 |
+
value: 24.464
|
273 |
+
- type: precision_at_5
|
274 |
+
value: 18.026
|
275 |
+
- type: recall_at_1
|
276 |
+
value: 33.997
|
277 |
+
- type: recall_at_10
|
278 |
+
value: 70.35900000000001
|
279 |
+
- type: recall_at_100
|
280 |
+
value: 91.642
|
281 |
+
- type: recall_at_1000
|
282 |
+
value: 97.977
|
283 |
+
- type: recall_at_3
|
284 |
+
value: 52.76
|
285 |
+
- type: recall_at_5
|
286 |
+
value: 61.148
|
287 |
+
- task:
|
288 |
+
type: Retrieval
|
289 |
+
dataset:
|
290 |
+
name: MTEB CQADupstackEnglishRetrieval
|
291 |
+
type: BeIR/cqadupstack
|
292 |
+
config: default
|
293 |
+
split: test
|
294 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
295 |
+
metrics:
|
296 |
+
- type: map_at_1
|
297 |
+
value: 35.884
|
298 |
+
- type: map_at_10
|
299 |
+
value: 48.14
|
300 |
+
- type: map_at_100
|
301 |
+
value: 49.5
|
302 |
+
- type: map_at_1000
|
303 |
+
value: 49.63
|
304 |
+
- type: map_at_3
|
305 |
+
value: 44.646
|
306 |
+
- type: map_at_5
|
307 |
+
value: 46.617999999999995
|
308 |
+
- type: mrr_at_1
|
309 |
+
value: 44.458999999999996
|
310 |
+
- type: mrr_at_10
|
311 |
+
value: 53.751000000000005
|
312 |
+
- type: mrr_at_100
|
313 |
+
value: 54.37800000000001
|
314 |
+
- type: mrr_at_1000
|
315 |
+
value: 54.415
|
316 |
+
- type: mrr_at_3
|
317 |
+
value: 51.815
|
318 |
+
- type: mrr_at_5
|
319 |
+
value: 52.882
|
320 |
+
- type: ndcg_at_1
|
321 |
+
value: 44.458999999999996
|
322 |
+
- type: ndcg_at_10
|
323 |
+
value: 54.157
|
324 |
+
- type: ndcg_at_100
|
325 |
+
value: 58.362
|
326 |
+
- type: ndcg_at_1000
|
327 |
+
value: 60.178
|
328 |
+
- type: ndcg_at_3
|
329 |
+
value: 49.661
|
330 |
+
- type: ndcg_at_5
|
331 |
+
value: 51.74999999999999
|
332 |
+
- type: precision_at_1
|
333 |
+
value: 44.458999999999996
|
334 |
+
- type: precision_at_10
|
335 |
+
value: 10.248
|
336 |
+
- type: precision_at_100
|
337 |
+
value: 1.5890000000000002
|
338 |
+
- type: precision_at_1000
|
339 |
+
value: 0.207
|
340 |
+
- type: precision_at_3
|
341 |
+
value: 23.928
|
342 |
+
- type: precision_at_5
|
343 |
+
value: 16.878999999999998
|
344 |
+
- type: recall_at_1
|
345 |
+
value: 35.884
|
346 |
+
- type: recall_at_10
|
347 |
+
value: 64.798
|
348 |
+
- type: recall_at_100
|
349 |
+
value: 82.345
|
350 |
+
- type: recall_at_1000
|
351 |
+
value: 93.267
|
352 |
+
- type: recall_at_3
|
353 |
+
value: 51.847
|
354 |
+
- type: recall_at_5
|
355 |
+
value: 57.601
|
356 |
+
- task:
|
357 |
+
type: Retrieval
|
358 |
+
dataset:
|
359 |
+
name: MTEB CQADupstackGamingRetrieval
|
360 |
+
type: BeIR/cqadupstack
|
361 |
+
config: default
|
362 |
+
split: test
|
363 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
364 |
+
metrics:
|
365 |
+
- type: map_at_1
|
366 |
+
value: 39.383
|
367 |
+
- type: map_at_10
|
368 |
+
value: 53.714
|
369 |
+
- type: map_at_100
|
370 |
+
value: 54.838
|
371 |
+
- type: map_at_1000
|
372 |
+
value: 54.87800000000001
|
373 |
+
- type: map_at_3
|
374 |
+
value: 50.114999999999995
|
375 |
+
- type: map_at_5
|
376 |
+
value: 52.153000000000006
|
377 |
+
- type: mrr_at_1
|
378 |
+
value: 45.016
|
379 |
+
- type: mrr_at_10
|
380 |
+
value: 56.732000000000006
|
381 |
+
- type: mrr_at_100
|
382 |
+
value: 57.411
|
383 |
+
- type: mrr_at_1000
|
384 |
+
value: 57.431
|
385 |
+
- type: mrr_at_3
|
386 |
+
value: 54.044000000000004
|
387 |
+
- type: mrr_at_5
|
388 |
+
value: 55.639
|
389 |
+
- type: ndcg_at_1
|
390 |
+
value: 45.016
|
391 |
+
- type: ndcg_at_10
|
392 |
+
value: 60.228
|
393 |
+
- type: ndcg_at_100
|
394 |
+
value: 64.277
|
395 |
+
- type: ndcg_at_1000
|
396 |
+
value: 65.07
|
397 |
+
- type: ndcg_at_3
|
398 |
+
value: 54.124
|
399 |
+
- type: ndcg_at_5
|
400 |
+
value: 57.147000000000006
|
401 |
+
- type: precision_at_1
|
402 |
+
value: 45.016
|
403 |
+
- type: precision_at_10
|
404 |
+
value: 9.937
|
405 |
+
- type: precision_at_100
|
406 |
+
value: 1.288
|
407 |
+
- type: precision_at_1000
|
408 |
+
value: 0.13899999999999998
|
409 |
+
- type: precision_at_3
|
410 |
+
value: 24.471999999999998
|
411 |
+
- type: precision_at_5
|
412 |
+
value: 16.991
|
413 |
+
- type: recall_at_1
|
414 |
+
value: 39.383
|
415 |
+
- type: recall_at_10
|
416 |
+
value: 76.175
|
417 |
+
- type: recall_at_100
|
418 |
+
value: 93.02
|
419 |
+
- type: recall_at_1000
|
420 |
+
value: 98.60900000000001
|
421 |
+
- type: recall_at_3
|
422 |
+
value: 60.265
|
423 |
+
- type: recall_at_5
|
424 |
+
value: 67.46600000000001
|
425 |
+
- task:
|
426 |
+
type: Retrieval
|
427 |
+
dataset:
|
428 |
+
name: MTEB CQADupstackGisRetrieval
|
429 |
+
type: BeIR/cqadupstack
|
430 |
+
config: default
|
431 |
+
split: test
|
432 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
433 |
+
metrics:
|
434 |
+
- type: map_at_1
|
435 |
+
value: 27.426000000000002
|
436 |
+
- type: map_at_10
|
437 |
+
value: 37.397000000000006
|
438 |
+
- type: map_at_100
|
439 |
+
value: 38.61
|
440 |
+
- type: map_at_1000
|
441 |
+
value: 38.678000000000004
|
442 |
+
- type: map_at_3
|
443 |
+
value: 34.150999999999996
|
444 |
+
- type: map_at_5
|
445 |
+
value: 36.137
|
446 |
+
- type: mrr_at_1
|
447 |
+
value: 29.944
|
448 |
+
- type: mrr_at_10
|
449 |
+
value: 39.654
|
450 |
+
- type: mrr_at_100
|
451 |
+
value: 40.638000000000005
|
452 |
+
- type: mrr_at_1000
|
453 |
+
value: 40.691
|
454 |
+
- type: mrr_at_3
|
455 |
+
value: 36.817
|
456 |
+
- type: mrr_at_5
|
457 |
+
value: 38.524
|
458 |
+
- type: ndcg_at_1
|
459 |
+
value: 29.944
|
460 |
+
- type: ndcg_at_10
|
461 |
+
value: 43.094
|
462 |
+
- type: ndcg_at_100
|
463 |
+
value: 48.789
|
464 |
+
- type: ndcg_at_1000
|
465 |
+
value: 50.339999999999996
|
466 |
+
- type: ndcg_at_3
|
467 |
+
value: 36.984
|
468 |
+
- type: ndcg_at_5
|
469 |
+
value: 40.248
|
470 |
+
- type: precision_at_1
|
471 |
+
value: 29.944
|
472 |
+
- type: precision_at_10
|
473 |
+
value: 6.78
|
474 |
+
- type: precision_at_100
|
475 |
+
value: 1.024
|
476 |
+
- type: precision_at_1000
|
477 |
+
value: 0.11800000000000001
|
478 |
+
- type: precision_at_3
|
479 |
+
value: 15.895000000000001
|
480 |
+
- type: precision_at_5
|
481 |
+
value: 11.39
|
482 |
+
- type: recall_at_1
|
483 |
+
value: 27.426000000000002
|
484 |
+
- type: recall_at_10
|
485 |
+
value: 58.464000000000006
|
486 |
+
- type: recall_at_100
|
487 |
+
value: 84.193
|
488 |
+
- type: recall_at_1000
|
489 |
+
value: 95.52000000000001
|
490 |
+
- type: recall_at_3
|
491 |
+
value: 42.172
|
492 |
+
- type: recall_at_5
|
493 |
+
value: 50.101
|
494 |
+
- task:
|
495 |
+
type: Retrieval
|
496 |
+
dataset:
|
497 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
498 |
+
type: BeIR/cqadupstack
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
502 |
+
metrics:
|
503 |
+
- type: map_at_1
|
504 |
+
value: 19.721
|
505 |
+
- type: map_at_10
|
506 |
+
value: 31.604
|
507 |
+
- type: map_at_100
|
508 |
+
value: 32.972
|
509 |
+
- type: map_at_1000
|
510 |
+
value: 33.077
|
511 |
+
- type: map_at_3
|
512 |
+
value: 27.218999999999998
|
513 |
+
- type: map_at_5
|
514 |
+
value: 29.53
|
515 |
+
- type: mrr_at_1
|
516 |
+
value: 25.0
|
517 |
+
- type: mrr_at_10
|
518 |
+
value: 35.843
|
519 |
+
- type: mrr_at_100
|
520 |
+
value: 36.785000000000004
|
521 |
+
- type: mrr_at_1000
|
522 |
+
value: 36.842000000000006
|
523 |
+
- type: mrr_at_3
|
524 |
+
value: 32.193
|
525 |
+
- type: mrr_at_5
|
526 |
+
value: 34.264
|
527 |
+
- type: ndcg_at_1
|
528 |
+
value: 25.0
|
529 |
+
- type: ndcg_at_10
|
530 |
+
value: 38.606
|
531 |
+
- type: ndcg_at_100
|
532 |
+
value: 44.272
|
533 |
+
- type: ndcg_at_1000
|
534 |
+
value: 46.527
|
535 |
+
- type: ndcg_at_3
|
536 |
+
value: 30.985000000000003
|
537 |
+
- type: ndcg_at_5
|
538 |
+
value: 34.43
|
539 |
+
- type: precision_at_1
|
540 |
+
value: 25.0
|
541 |
+
- type: precision_at_10
|
542 |
+
value: 7.811
|
543 |
+
- type: precision_at_100
|
544 |
+
value: 1.203
|
545 |
+
- type: precision_at_1000
|
546 |
+
value: 0.15
|
547 |
+
- type: precision_at_3
|
548 |
+
value: 15.423
|
549 |
+
- type: precision_at_5
|
550 |
+
value: 11.791
|
551 |
+
- type: recall_at_1
|
552 |
+
value: 19.721
|
553 |
+
- type: recall_at_10
|
554 |
+
value: 55.625
|
555 |
+
- type: recall_at_100
|
556 |
+
value: 79.34400000000001
|
557 |
+
- type: recall_at_1000
|
558 |
+
value: 95.208
|
559 |
+
- type: recall_at_3
|
560 |
+
value: 35.19
|
561 |
+
- type: recall_at_5
|
562 |
+
value: 43.626
|
563 |
+
- task:
|
564 |
+
type: Retrieval
|
565 |
+
dataset:
|
566 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
567 |
+
type: BeIR/cqadupstack
|
568 |
+
config: default
|
569 |
+
split: test
|
570 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
571 |
+
metrics:
|
572 |
+
- type: map_at_1
|
573 |
+
value: 33.784
|
574 |
+
- type: map_at_10
|
575 |
+
value: 47.522
|
576 |
+
- type: map_at_100
|
577 |
+
value: 48.949999999999996
|
578 |
+
- type: map_at_1000
|
579 |
+
value: 49.038
|
580 |
+
- type: map_at_3
|
581 |
+
value: 43.284
|
582 |
+
- type: map_at_5
|
583 |
+
value: 45.629
|
584 |
+
- type: mrr_at_1
|
585 |
+
value: 41.482
|
586 |
+
- type: mrr_at_10
|
587 |
+
value: 52.830999999999996
|
588 |
+
- type: mrr_at_100
|
589 |
+
value: 53.559999999999995
|
590 |
+
- type: mrr_at_1000
|
591 |
+
value: 53.588
|
592 |
+
- type: mrr_at_3
|
593 |
+
value: 50.016000000000005
|
594 |
+
- type: mrr_at_5
|
595 |
+
value: 51.614000000000004
|
596 |
+
- type: ndcg_at_1
|
597 |
+
value: 41.482
|
598 |
+
- type: ndcg_at_10
|
599 |
+
value: 54.569
|
600 |
+
- type: ndcg_at_100
|
601 |
+
value: 59.675999999999995
|
602 |
+
- type: ndcg_at_1000
|
603 |
+
value: 60.989000000000004
|
604 |
+
- type: ndcg_at_3
|
605 |
+
value: 48.187000000000005
|
606 |
+
- type: ndcg_at_5
|
607 |
+
value: 51.183
|
608 |
+
- type: precision_at_1
|
609 |
+
value: 41.482
|
610 |
+
- type: precision_at_10
|
611 |
+
value: 10.221
|
612 |
+
- type: precision_at_100
|
613 |
+
value: 1.486
|
614 |
+
- type: precision_at_1000
|
615 |
+
value: 0.17500000000000002
|
616 |
+
- type: precision_at_3
|
617 |
+
value: 23.548
|
618 |
+
- type: precision_at_5
|
619 |
+
value: 16.805
|
620 |
+
- type: recall_at_1
|
621 |
+
value: 33.784
|
622 |
+
- type: recall_at_10
|
623 |
+
value: 69.798
|
624 |
+
- type: recall_at_100
|
625 |
+
value: 90.098
|
626 |
+
- type: recall_at_1000
|
627 |
+
value: 98.176
|
628 |
+
- type: recall_at_3
|
629 |
+
value: 52.127
|
630 |
+
- type: recall_at_5
|
631 |
+
value: 59.861
|
632 |
+
- task:
|
633 |
+
type: Retrieval
|
634 |
+
dataset:
|
635 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
636 |
+
type: BeIR/cqadupstack
|
637 |
+
config: default
|
638 |
+
split: test
|
639 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
640 |
+
metrics:
|
641 |
+
- type: map_at_1
|
642 |
+
value: 28.038999999999998
|
643 |
+
- type: map_at_10
|
644 |
+
value: 41.904
|
645 |
+
- type: map_at_100
|
646 |
+
value: 43.36
|
647 |
+
- type: map_at_1000
|
648 |
+
value: 43.453
|
649 |
+
- type: map_at_3
|
650 |
+
value: 37.785999999999994
|
651 |
+
- type: map_at_5
|
652 |
+
value: 40.105000000000004
|
653 |
+
- type: mrr_at_1
|
654 |
+
value: 35.046
|
655 |
+
- type: mrr_at_10
|
656 |
+
value: 46.926
|
657 |
+
- type: mrr_at_100
|
658 |
+
value: 47.815000000000005
|
659 |
+
- type: mrr_at_1000
|
660 |
+
value: 47.849000000000004
|
661 |
+
- type: mrr_at_3
|
662 |
+
value: 44.273
|
663 |
+
- type: mrr_at_5
|
664 |
+
value: 45.774
|
665 |
+
- type: ndcg_at_1
|
666 |
+
value: 35.046
|
667 |
+
- type: ndcg_at_10
|
668 |
+
value: 48.937000000000005
|
669 |
+
- type: ndcg_at_100
|
670 |
+
value: 54.544000000000004
|
671 |
+
- type: ndcg_at_1000
|
672 |
+
value: 56.069
|
673 |
+
- type: ndcg_at_3
|
674 |
+
value: 42.858000000000004
|
675 |
+
- type: ndcg_at_5
|
676 |
+
value: 45.644
|
677 |
+
- type: precision_at_1
|
678 |
+
value: 35.046
|
679 |
+
- type: precision_at_10
|
680 |
+
value: 9.452
|
681 |
+
- type: precision_at_100
|
682 |
+
value: 1.429
|
683 |
+
- type: precision_at_1000
|
684 |
+
value: 0.173
|
685 |
+
- type: precision_at_3
|
686 |
+
value: 21.346999999999998
|
687 |
+
- type: precision_at_5
|
688 |
+
value: 15.342
|
689 |
+
- type: recall_at_1
|
690 |
+
value: 28.038999999999998
|
691 |
+
- type: recall_at_10
|
692 |
+
value: 64.59700000000001
|
693 |
+
- type: recall_at_100
|
694 |
+
value: 87.735
|
695 |
+
- type: recall_at_1000
|
696 |
+
value: 97.41300000000001
|
697 |
+
- type: recall_at_3
|
698 |
+
value: 47.368
|
699 |
+
- type: recall_at_5
|
700 |
+
value: 54.93900000000001
|
701 |
+
- task:
|
702 |
+
type: Retrieval
|
703 |
+
dataset:
|
704 |
+
name: MTEB CQADupstackRetrieval
|
705 |
+
type: BeIR/cqadupstack
|
706 |
+
config: default
|
707 |
+
split: test
|
708 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
709 |
+
metrics:
|
710 |
+
- type: map_at_1
|
711 |
+
value: 28.17291666666667
|
712 |
+
- type: map_at_10
|
713 |
+
value: 40.025749999999995
|
714 |
+
- type: map_at_100
|
715 |
+
value: 41.39208333333333
|
716 |
+
- type: map_at_1000
|
717 |
+
value: 41.499249999999996
|
718 |
+
- type: map_at_3
|
719 |
+
value: 36.347
|
720 |
+
- type: map_at_5
|
721 |
+
value: 38.41391666666667
|
722 |
+
- type: mrr_at_1
|
723 |
+
value: 33.65925
|
724 |
+
- type: mrr_at_10
|
725 |
+
value: 44.085499999999996
|
726 |
+
- type: mrr_at_100
|
727 |
+
value: 44.94116666666667
|
728 |
+
- type: mrr_at_1000
|
729 |
+
value: 44.9855
|
730 |
+
- type: mrr_at_3
|
731 |
+
value: 41.2815
|
732 |
+
- type: mrr_at_5
|
733 |
+
value: 42.91491666666666
|
734 |
+
- type: ndcg_at_1
|
735 |
+
value: 33.65925
|
736 |
+
- type: ndcg_at_10
|
737 |
+
value: 46.430833333333325
|
738 |
+
- type: ndcg_at_100
|
739 |
+
value: 51.761
|
740 |
+
- type: ndcg_at_1000
|
741 |
+
value: 53.50899999999999
|
742 |
+
- type: ndcg_at_3
|
743 |
+
value: 40.45133333333333
|
744 |
+
- type: ndcg_at_5
|
745 |
+
value: 43.31483333333334
|
746 |
+
- type: precision_at_1
|
747 |
+
value: 33.65925
|
748 |
+
- type: precision_at_10
|
749 |
+
value: 8.4995
|
750 |
+
- type: precision_at_100
|
751 |
+
value: 1.3210000000000004
|
752 |
+
- type: precision_at_1000
|
753 |
+
value: 0.16591666666666666
|
754 |
+
- type: precision_at_3
|
755 |
+
value: 19.165083333333335
|
756 |
+
- type: precision_at_5
|
757 |
+
value: 13.81816666666667
|
758 |
+
- type: recall_at_1
|
759 |
+
value: 28.17291666666667
|
760 |
+
- type: recall_at_10
|
761 |
+
value: 61.12624999999999
|
762 |
+
- type: recall_at_100
|
763 |
+
value: 83.97266666666667
|
764 |
+
- type: recall_at_1000
|
765 |
+
value: 95.66550000000001
|
766 |
+
- type: recall_at_3
|
767 |
+
value: 44.661249999999995
|
768 |
+
- type: recall_at_5
|
769 |
+
value: 51.983333333333334
|
770 |
+
- type: map_at_1
|
771 |
+
value: 17.936
|
772 |
+
- type: map_at_10
|
773 |
+
value: 27.399
|
774 |
+
- type: map_at_100
|
775 |
+
value: 28.632
|
776 |
+
- type: map_at_1000
|
777 |
+
value: 28.738000000000003
|
778 |
+
- type: map_at_3
|
779 |
+
value: 24.456
|
780 |
+
- type: map_at_5
|
781 |
+
value: 26.06
|
782 |
+
- type: mrr_at_1
|
783 |
+
value: 19.224
|
784 |
+
- type: mrr_at_10
|
785 |
+
value: 28.998
|
786 |
+
- type: mrr_at_100
|
787 |
+
value: 30.11
|
788 |
+
- type: mrr_at_1000
|
789 |
+
value: 30.177
|
790 |
+
- type: mrr_at_3
|
791 |
+
value: 26.247999999999998
|
792 |
+
- type: mrr_at_5
|
793 |
+
value: 27.708
|
794 |
+
- type: ndcg_at_1
|
795 |
+
value: 19.224
|
796 |
+
- type: ndcg_at_10
|
797 |
+
value: 32.911
|
798 |
+
- type: ndcg_at_100
|
799 |
+
value: 38.873999999999995
|
800 |
+
- type: ndcg_at_1000
|
801 |
+
value: 41.277
|
802 |
+
- type: ndcg_at_3
|
803 |
+
value: 27.142
|
804 |
+
- type: ndcg_at_5
|
805 |
+
value: 29.755
|
806 |
+
- type: precision_at_1
|
807 |
+
value: 19.224
|
808 |
+
- type: precision_at_10
|
809 |
+
value: 5.6930000000000005
|
810 |
+
- type: precision_at_100
|
811 |
+
value: 0.9259999999999999
|
812 |
+
- type: precision_at_1000
|
813 |
+
value: 0.126
|
814 |
+
- type: precision_at_3
|
815 |
+
value: 12.138
|
816 |
+
- type: precision_at_5
|
817 |
+
value: 8.909
|
818 |
+
- type: recall_at_1
|
819 |
+
value: 17.936
|
820 |
+
- type: recall_at_10
|
821 |
+
value: 48.096
|
822 |
+
- type: recall_at_100
|
823 |
+
value: 75.389
|
824 |
+
- type: recall_at_1000
|
825 |
+
value: 92.803
|
826 |
+
- type: recall_at_3
|
827 |
+
value: 32.812999999999995
|
828 |
+
- type: recall_at_5
|
829 |
+
value: 38.851
|
830 |
+
- task:
|
831 |
+
type: Retrieval
|
832 |
+
dataset:
|
833 |
+
name: MTEB CQADupstackStatsRetrieval
|
834 |
+
type: BeIR/cqadupstack
|
835 |
+
config: default
|
836 |
+
split: test
|
837 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
838 |
+
metrics:
|
839 |
+
- type: map_at_1
|
840 |
+
value: 24.681
|
841 |
+
- type: map_at_10
|
842 |
+
value: 34.892
|
843 |
+
- type: map_at_100
|
844 |
+
value: 35.996
|
845 |
+
- type: map_at_1000
|
846 |
+
value: 36.083
|
847 |
+
- type: map_at_3
|
848 |
+
value: 31.491999999999997
|
849 |
+
- type: map_at_5
|
850 |
+
value: 33.632
|
851 |
+
- type: mrr_at_1
|
852 |
+
value: 28.528
|
853 |
+
- type: mrr_at_10
|
854 |
+
value: 37.694
|
855 |
+
- type: mrr_at_100
|
856 |
+
value: 38.613
|
857 |
+
- type: mrr_at_1000
|
858 |
+
value: 38.668
|
859 |
+
- type: mrr_at_3
|
860 |
+
value: 34.714
|
861 |
+
- type: mrr_at_5
|
862 |
+
value: 36.616
|
863 |
+
- type: ndcg_at_1
|
864 |
+
value: 28.528
|
865 |
+
- type: ndcg_at_10
|
866 |
+
value: 40.703
|
867 |
+
- type: ndcg_at_100
|
868 |
+
value: 45.993
|
869 |
+
- type: ndcg_at_1000
|
870 |
+
value: 47.847
|
871 |
+
- type: ndcg_at_3
|
872 |
+
value: 34.622
|
873 |
+
- type: ndcg_at_5
|
874 |
+
value: 38.035999999999994
|
875 |
+
- type: precision_at_1
|
876 |
+
value: 28.528
|
877 |
+
- type: precision_at_10
|
878 |
+
value: 6.902
|
879 |
+
- type: precision_at_100
|
880 |
+
value: 1.0370000000000001
|
881 |
+
- type: precision_at_1000
|
882 |
+
value: 0.126
|
883 |
+
- type: precision_at_3
|
884 |
+
value: 15.798000000000002
|
885 |
+
- type: precision_at_5
|
886 |
+
value: 11.655999999999999
|
887 |
+
- type: recall_at_1
|
888 |
+
value: 24.681
|
889 |
+
- type: recall_at_10
|
890 |
+
value: 55.81
|
891 |
+
- type: recall_at_100
|
892 |
+
value: 79.785
|
893 |
+
- type: recall_at_1000
|
894 |
+
value: 92.959
|
895 |
+
- type: recall_at_3
|
896 |
+
value: 39.074
|
897 |
+
- type: recall_at_5
|
898 |
+
value: 47.568
|
899 |
+
- task:
|
900 |
+
type: Retrieval
|
901 |
+
dataset:
|
902 |
+
name: MTEB CQADupstackTexRetrieval
|
903 |
+
type: BeIR/cqadupstack
|
904 |
+
config: default
|
905 |
+
split: test
|
906 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
907 |
+
metrics:
|
908 |
+
- type: map_at_1
|
909 |
+
value: 18.627
|
910 |
+
- type: map_at_10
|
911 |
+
value: 27.872000000000003
|
912 |
+
- type: map_at_100
|
913 |
+
value: 29.237999999999996
|
914 |
+
- type: map_at_1000
|
915 |
+
value: 29.363
|
916 |
+
- type: map_at_3
|
917 |
+
value: 24.751
|
918 |
+
- type: map_at_5
|
919 |
+
value: 26.521
|
920 |
+
- type: mrr_at_1
|
921 |
+
value: 23.021
|
922 |
+
- type: mrr_at_10
|
923 |
+
value: 31.924000000000003
|
924 |
+
- type: mrr_at_100
|
925 |
+
value: 32.922000000000004
|
926 |
+
- type: mrr_at_1000
|
927 |
+
value: 32.988
|
928 |
+
- type: mrr_at_3
|
929 |
+
value: 29.192
|
930 |
+
- type: mrr_at_5
|
931 |
+
value: 30.798
|
932 |
+
- type: ndcg_at_1
|
933 |
+
value: 23.021
|
934 |
+
- type: ndcg_at_10
|
935 |
+
value: 33.535
|
936 |
+
- type: ndcg_at_100
|
937 |
+
value: 39.732
|
938 |
+
- type: ndcg_at_1000
|
939 |
+
value: 42.201
|
940 |
+
- type: ndcg_at_3
|
941 |
+
value: 28.153
|
942 |
+
- type: ndcg_at_5
|
943 |
+
value: 30.746000000000002
|
944 |
+
- type: precision_at_1
|
945 |
+
value: 23.021
|
946 |
+
- type: precision_at_10
|
947 |
+
value: 6.459
|
948 |
+
- type: precision_at_100
|
949 |
+
value: 1.1320000000000001
|
950 |
+
- type: precision_at_1000
|
951 |
+
value: 0.153
|
952 |
+
- type: precision_at_3
|
953 |
+
value: 13.719000000000001
|
954 |
+
- type: precision_at_5
|
955 |
+
value: 10.193000000000001
|
956 |
+
- type: recall_at_1
|
957 |
+
value: 18.627
|
958 |
+
- type: recall_at_10
|
959 |
+
value: 46.463
|
960 |
+
- type: recall_at_100
|
961 |
+
value: 74.226
|
962 |
+
- type: recall_at_1000
|
963 |
+
value: 91.28500000000001
|
964 |
+
- type: recall_at_3
|
965 |
+
value: 31.357000000000003
|
966 |
+
- type: recall_at_5
|
967 |
+
value: 38.067
|
968 |
+
- task:
|
969 |
+
type: Retrieval
|
970 |
+
dataset:
|
971 |
+
name: MTEB CQADupstackUnixRetrieval
|
972 |
+
type: BeIR/cqadupstack
|
973 |
+
config: default
|
974 |
+
split: test
|
975 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
976 |
+
metrics:
|
977 |
+
- type: map_at_1
|
978 |
+
value: 31.457
|
979 |
+
- type: map_at_10
|
980 |
+
value: 42.888
|
981 |
+
- type: map_at_100
|
982 |
+
value: 44.24
|
983 |
+
- type: map_at_1000
|
984 |
+
value: 44.327
|
985 |
+
- type: map_at_3
|
986 |
+
value: 39.588
|
987 |
+
- type: map_at_5
|
988 |
+
value: 41.423
|
989 |
+
- type: mrr_at_1
|
990 |
+
value: 37.126999999999995
|
991 |
+
- type: mrr_at_10
|
992 |
+
value: 47.083000000000006
|
993 |
+
- type: mrr_at_100
|
994 |
+
value: 47.997
|
995 |
+
- type: mrr_at_1000
|
996 |
+
value: 48.044
|
997 |
+
- type: mrr_at_3
|
998 |
+
value: 44.574000000000005
|
999 |
+
- type: mrr_at_5
|
1000 |
+
value: 46.202
|
1001 |
+
- type: ndcg_at_1
|
1002 |
+
value: 37.126999999999995
|
1003 |
+
- type: ndcg_at_10
|
1004 |
+
value: 48.833
|
1005 |
+
- type: ndcg_at_100
|
1006 |
+
value: 54.327000000000005
|
1007 |
+
- type: ndcg_at_1000
|
1008 |
+
value: 56.011
|
1009 |
+
- type: ndcg_at_3
|
1010 |
+
value: 43.541999999999994
|
1011 |
+
- type: ndcg_at_5
|
1012 |
+
value: 46.127
|
1013 |
+
- type: precision_at_1
|
1014 |
+
value: 37.126999999999995
|
1015 |
+
- type: precision_at_10
|
1016 |
+
value: 8.376999999999999
|
1017 |
+
- type: precision_at_100
|
1018 |
+
value: 1.2309999999999999
|
1019 |
+
- type: precision_at_1000
|
1020 |
+
value: 0.146
|
1021 |
+
- type: precision_at_3
|
1022 |
+
value: 20.211000000000002
|
1023 |
+
- type: precision_at_5
|
1024 |
+
value: 14.16
|
1025 |
+
- type: recall_at_1
|
1026 |
+
value: 31.457
|
1027 |
+
- type: recall_at_10
|
1028 |
+
value: 62.369
|
1029 |
+
- type: recall_at_100
|
1030 |
+
value: 85.444
|
1031 |
+
- type: recall_at_1000
|
1032 |
+
value: 96.65599999999999
|
1033 |
+
- type: recall_at_3
|
1034 |
+
value: 47.961
|
1035 |
+
- type: recall_at_5
|
1036 |
+
value: 54.676
|
1037 |
+
- task:
|
1038 |
+
type: Retrieval
|
1039 |
+
dataset:
|
1040 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
1041 |
+
type: BeIR/cqadupstack
|
1042 |
+
config: default
|
1043 |
+
split: test
|
1044 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
1045 |
+
metrics:
|
1046 |
+
- type: map_at_1
|
1047 |
+
value: 27.139999999999997
|
1048 |
+
- type: map_at_10
|
1049 |
+
value: 38.801
|
1050 |
+
- type: map_at_100
|
1051 |
+
value: 40.549
|
1052 |
+
- type: map_at_1000
|
1053 |
+
value: 40.802
|
1054 |
+
- type: map_at_3
|
1055 |
+
value: 35.05
|
1056 |
+
- type: map_at_5
|
1057 |
+
value: 36.884
|
1058 |
+
- type: mrr_at_1
|
1059 |
+
value: 33.004
|
1060 |
+
- type: mrr_at_10
|
1061 |
+
value: 43.864
|
1062 |
+
- type: mrr_at_100
|
1063 |
+
value: 44.667
|
1064 |
+
- type: mrr_at_1000
|
1065 |
+
value: 44.717
|
1066 |
+
- type: mrr_at_3
|
1067 |
+
value: 40.777
|
1068 |
+
- type: mrr_at_5
|
1069 |
+
value: 42.319
|
1070 |
+
- type: ndcg_at_1
|
1071 |
+
value: 33.004
|
1072 |
+
- type: ndcg_at_10
|
1073 |
+
value: 46.022
|
1074 |
+
- type: ndcg_at_100
|
1075 |
+
value: 51.542
|
1076 |
+
- type: ndcg_at_1000
|
1077 |
+
value: 53.742000000000004
|
1078 |
+
- type: ndcg_at_3
|
1079 |
+
value: 39.795
|
1080 |
+
- type: ndcg_at_5
|
1081 |
+
value: 42.272
|
1082 |
+
- type: precision_at_1
|
1083 |
+
value: 33.004
|
1084 |
+
- type: precision_at_10
|
1085 |
+
value: 9.012
|
1086 |
+
- type: precision_at_100
|
1087 |
+
value: 1.7770000000000001
|
1088 |
+
- type: precision_at_1000
|
1089 |
+
value: 0.26
|
1090 |
+
- type: precision_at_3
|
1091 |
+
value: 19.038
|
1092 |
+
- type: precision_at_5
|
1093 |
+
value: 13.675999999999998
|
1094 |
+
- type: recall_at_1
|
1095 |
+
value: 27.139999999999997
|
1096 |
+
- type: recall_at_10
|
1097 |
+
value: 60.961
|
1098 |
+
- type: recall_at_100
|
1099 |
+
value: 84.451
|
1100 |
+
- type: recall_at_1000
|
1101 |
+
value: 98.113
|
1102 |
+
- type: recall_at_3
|
1103 |
+
value: 43.001
|
1104 |
+
- type: recall_at_5
|
1105 |
+
value: 49.896
|
1106 |
+
- task:
|
1107 |
+
type: Retrieval
|
1108 |
+
dataset:
|
1109 |
+
name: MTEB ClimateFEVER
|
1110 |
+
type: mteb/climate-fever
|
1111 |
+
config: default
|
1112 |
+
split: test
|
1113 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
1114 |
+
metrics:
|
1115 |
+
- type: map_at_1
|
1116 |
+
value: 22.076999999999998
|
1117 |
+
- type: map_at_10
|
1118 |
+
value: 35.44
|
1119 |
+
- type: map_at_100
|
1120 |
+
value: 37.651
|
1121 |
+
- type: map_at_1000
|
1122 |
+
value: 37.824999999999996
|
1123 |
+
- type: map_at_3
|
1124 |
+
value: 30.764999999999997
|
1125 |
+
- type: map_at_5
|
1126 |
+
value: 33.26
|
1127 |
+
- type: mrr_at_1
|
1128 |
+
value: 50.163000000000004
|
1129 |
+
- type: mrr_at_10
|
1130 |
+
value: 61.207
|
1131 |
+
- type: mrr_at_100
|
1132 |
+
value: 61.675000000000004
|
1133 |
+
- type: mrr_at_1000
|
1134 |
+
value: 61.692
|
1135 |
+
- type: mrr_at_3
|
1136 |
+
value: 58.60999999999999
|
1137 |
+
- type: mrr_at_5
|
1138 |
+
value: 60.307
|
1139 |
+
- type: ndcg_at_1
|
1140 |
+
value: 50.163000000000004
|
1141 |
+
- type: ndcg_at_10
|
1142 |
+
value: 45.882
|
1143 |
+
- type: ndcg_at_100
|
1144 |
+
value: 53.239999999999995
|
1145 |
+
- type: ndcg_at_1000
|
1146 |
+
value: 55.852000000000004
|
1147 |
+
- type: ndcg_at_3
|
1148 |
+
value: 40.514
|
1149 |
+
- type: ndcg_at_5
|
1150 |
+
value: 42.038
|
1151 |
+
- type: precision_at_1
|
1152 |
+
value: 50.163000000000004
|
1153 |
+
- type: precision_at_10
|
1154 |
+
value: 13.466000000000001
|
1155 |
+
- type: precision_at_100
|
1156 |
+
value: 2.164
|
1157 |
+
- type: precision_at_1000
|
1158 |
+
value: 0.266
|
1159 |
+
- type: precision_at_3
|
1160 |
+
value: 29.707
|
1161 |
+
- type: precision_at_5
|
1162 |
+
value: 21.694
|
1163 |
+
- type: recall_at_1
|
1164 |
+
value: 22.076999999999998
|
1165 |
+
- type: recall_at_10
|
1166 |
+
value: 50.193
|
1167 |
+
- type: recall_at_100
|
1168 |
+
value: 74.993
|
1169 |
+
- type: recall_at_1000
|
1170 |
+
value: 89.131
|
1171 |
+
- type: recall_at_3
|
1172 |
+
value: 35.472
|
1173 |
+
- type: recall_at_5
|
1174 |
+
value: 41.814
|
1175 |
+
- task:
|
1176 |
+
type: Retrieval
|
1177 |
+
dataset:
|
1178 |
+
name: MTEB DBPedia
|
1179 |
+
type: mteb/dbpedia
|
1180 |
+
config: default
|
1181 |
+
split: test
|
1182 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
1183 |
+
metrics:
|
1184 |
+
- type: map_at_1
|
1185 |
+
value: 9.953
|
1186 |
+
- type: map_at_10
|
1187 |
+
value: 24.515
|
1188 |
+
- type: map_at_100
|
1189 |
+
value: 36.173
|
1190 |
+
- type: map_at_1000
|
1191 |
+
value: 38.351
|
1192 |
+
- type: map_at_3
|
1193 |
+
value: 16.592000000000002
|
1194 |
+
- type: map_at_5
|
1195 |
+
value: 20.036
|
1196 |
+
- type: mrr_at_1
|
1197 |
+
value: 74.25
|
1198 |
+
- type: mrr_at_10
|
1199 |
+
value: 81.813
|
1200 |
+
- type: mrr_at_100
|
1201 |
+
value: 82.006
|
1202 |
+
- type: mrr_at_1000
|
1203 |
+
value: 82.011
|
1204 |
+
- type: mrr_at_3
|
1205 |
+
value: 80.875
|
1206 |
+
- type: mrr_at_5
|
1207 |
+
value: 81.362
|
1208 |
+
- type: ndcg_at_1
|
1209 |
+
value: 62.5
|
1210 |
+
- type: ndcg_at_10
|
1211 |
+
value: 52.42
|
1212 |
+
- type: ndcg_at_100
|
1213 |
+
value: 56.808
|
1214 |
+
- type: ndcg_at_1000
|
1215 |
+
value: 63.532999999999994
|
1216 |
+
- type: ndcg_at_3
|
1217 |
+
value: 56.654
|
1218 |
+
- type: ndcg_at_5
|
1219 |
+
value: 54.18300000000001
|
1220 |
+
- type: precision_at_1
|
1221 |
+
value: 74.25
|
1222 |
+
- type: precision_at_10
|
1223 |
+
value: 42.699999999999996
|
1224 |
+
- type: precision_at_100
|
1225 |
+
value: 13.675
|
1226 |
+
- type: precision_at_1000
|
1227 |
+
value: 2.664
|
1228 |
+
- type: precision_at_3
|
1229 |
+
value: 60.5
|
1230 |
+
- type: precision_at_5
|
1231 |
+
value: 52.800000000000004
|
1232 |
+
- type: recall_at_1
|
1233 |
+
value: 9.953
|
1234 |
+
- type: recall_at_10
|
1235 |
+
value: 30.253999999999998
|
1236 |
+
- type: recall_at_100
|
1237 |
+
value: 62.516000000000005
|
1238 |
+
- type: recall_at_1000
|
1239 |
+
value: 84.163
|
1240 |
+
- type: recall_at_3
|
1241 |
+
value: 18.13
|
1242 |
+
- type: recall_at_5
|
1243 |
+
value: 22.771
|
1244 |
+
- task:
|
1245 |
+
type: Classification
|
1246 |
+
dataset:
|
1247 |
+
name: MTEB EmotionClassification
|
1248 |
+
type: mteb/emotion
|
1249 |
+
config: default
|
1250 |
+
split: test
|
1251 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1252 |
+
metrics:
|
1253 |
+
- type: accuracy
|
1254 |
+
value: 79.455
|
1255 |
+
- type: f1
|
1256 |
+
value: 74.16798697647569
|
1257 |
+
- task:
|
1258 |
+
type: Retrieval
|
1259 |
+
dataset:
|
1260 |
+
name: MTEB FEVER
|
1261 |
+
type: mteb/fever
|
1262 |
+
config: default
|
1263 |
+
split: test
|
1264 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
1265 |
+
metrics:
|
1266 |
+
- type: map_at_1
|
1267 |
+
value: 87.531
|
1268 |
+
- type: map_at_10
|
1269 |
+
value: 93.16799999999999
|
1270 |
+
- type: map_at_100
|
1271 |
+
value: 93.341
|
1272 |
+
- type: map_at_1000
|
1273 |
+
value: 93.349
|
1274 |
+
- type: map_at_3
|
1275 |
+
value: 92.444
|
1276 |
+
- type: map_at_5
|
1277 |
+
value: 92.865
|
1278 |
+
- type: mrr_at_1
|
1279 |
+
value: 94.014
|
1280 |
+
- type: mrr_at_10
|
1281 |
+
value: 96.761
|
1282 |
+
- type: mrr_at_100
|
1283 |
+
value: 96.762
|
1284 |
+
- type: mrr_at_1000
|
1285 |
+
value: 96.762
|
1286 |
+
- type: mrr_at_3
|
1287 |
+
value: 96.672
|
1288 |
+
- type: mrr_at_5
|
1289 |
+
value: 96.736
|
1290 |
+
- type: ndcg_at_1
|
1291 |
+
value: 94.014
|
1292 |
+
- type: ndcg_at_10
|
1293 |
+
value: 95.112
|
1294 |
+
- type: ndcg_at_100
|
1295 |
+
value: 95.578
|
1296 |
+
- type: ndcg_at_1000
|
1297 |
+
value: 95.68900000000001
|
1298 |
+
- type: ndcg_at_3
|
1299 |
+
value: 94.392
|
1300 |
+
- type: ndcg_at_5
|
1301 |
+
value: 94.72500000000001
|
1302 |
+
- type: precision_at_1
|
1303 |
+
value: 94.014
|
1304 |
+
- type: precision_at_10
|
1305 |
+
value: 11.065
|
1306 |
+
- type: precision_at_100
|
1307 |
+
value: 1.157
|
1308 |
+
- type: precision_at_1000
|
1309 |
+
value: 0.11800000000000001
|
1310 |
+
- type: precision_at_3
|
1311 |
+
value: 35.259
|
1312 |
+
- type: precision_at_5
|
1313 |
+
value: 21.599
|
1314 |
+
- type: recall_at_1
|
1315 |
+
value: 87.531
|
1316 |
+
- type: recall_at_10
|
1317 |
+
value: 97.356
|
1318 |
+
- type: recall_at_100
|
1319 |
+
value: 98.965
|
1320 |
+
- type: recall_at_1000
|
1321 |
+
value: 99.607
|
1322 |
+
- type: recall_at_3
|
1323 |
+
value: 95.312
|
1324 |
+
- type: recall_at_5
|
1325 |
+
value: 96.295
|
1326 |
+
- task:
|
1327 |
+
type: Retrieval
|
1328 |
+
dataset:
|
1329 |
+
name: MTEB FiQA2018
|
1330 |
+
type: mteb/fiqa
|
1331 |
+
config: default
|
1332 |
+
split: test
|
1333 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
1334 |
+
metrics:
|
1335 |
+
- type: map_at_1
|
1336 |
+
value: 32.055
|
1337 |
+
- type: map_at_10
|
1338 |
+
value: 53.114
|
1339 |
+
- type: map_at_100
|
1340 |
+
value: 55.235
|
1341 |
+
- type: map_at_1000
|
1342 |
+
value: 55.345
|
1343 |
+
- type: map_at_3
|
1344 |
+
value: 45.854
|
1345 |
+
- type: map_at_5
|
1346 |
+
value: 50.025
|
1347 |
+
- type: mrr_at_1
|
1348 |
+
value: 60.34
|
1349 |
+
- type: mrr_at_10
|
1350 |
+
value: 68.804
|
1351 |
+
- type: mrr_at_100
|
1352 |
+
value: 69.309
|
1353 |
+
- type: mrr_at_1000
|
1354 |
+
value: 69.32199999999999
|
1355 |
+
- type: mrr_at_3
|
1356 |
+
value: 66.40899999999999
|
1357 |
+
- type: mrr_at_5
|
1358 |
+
value: 67.976
|
1359 |
+
- type: ndcg_at_1
|
1360 |
+
value: 60.34
|
1361 |
+
- type: ndcg_at_10
|
1362 |
+
value: 62.031000000000006
|
1363 |
+
- type: ndcg_at_100
|
1364 |
+
value: 68.00500000000001
|
1365 |
+
- type: ndcg_at_1000
|
1366 |
+
value: 69.286
|
1367 |
+
- type: ndcg_at_3
|
1368 |
+
value: 56.355999999999995
|
1369 |
+
- type: ndcg_at_5
|
1370 |
+
value: 58.687
|
1371 |
+
- type: precision_at_1
|
1372 |
+
value: 60.34
|
1373 |
+
- type: precision_at_10
|
1374 |
+
value: 17.176
|
1375 |
+
- type: precision_at_100
|
1376 |
+
value: 2.36
|
1377 |
+
- type: precision_at_1000
|
1378 |
+
value: 0.259
|
1379 |
+
- type: precision_at_3
|
1380 |
+
value: 37.14
|
1381 |
+
- type: precision_at_5
|
1382 |
+
value: 27.809
|
1383 |
+
- type: recall_at_1
|
1384 |
+
value: 32.055
|
1385 |
+
- type: recall_at_10
|
1386 |
+
value: 70.91
|
1387 |
+
- type: recall_at_100
|
1388 |
+
value: 91.83
|
1389 |
+
- type: recall_at_1000
|
1390 |
+
value: 98.871
|
1391 |
+
- type: recall_at_3
|
1392 |
+
value: 51.202999999999996
|
1393 |
+
- type: recall_at_5
|
1394 |
+
value: 60.563
|
1395 |
+
- task:
|
1396 |
+
type: Retrieval
|
1397 |
+
dataset:
|
1398 |
+
name: MTEB HotpotQA
|
1399 |
+
type: mteb/hotpotqa
|
1400 |
+
config: default
|
1401 |
+
split: test
|
1402 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
1403 |
+
metrics:
|
1404 |
+
- type: map_at_1
|
1405 |
+
value: 43.68
|
1406 |
+
- type: map_at_10
|
1407 |
+
value: 64.389
|
1408 |
+
- type: map_at_100
|
1409 |
+
value: 65.24
|
1410 |
+
- type: map_at_1000
|
1411 |
+
value: 65.303
|
1412 |
+
- type: map_at_3
|
1413 |
+
value: 61.309000000000005
|
1414 |
+
- type: map_at_5
|
1415 |
+
value: 63.275999999999996
|
1416 |
+
- type: mrr_at_1
|
1417 |
+
value: 87.36
|
1418 |
+
- type: mrr_at_10
|
1419 |
+
value: 91.12
|
1420 |
+
- type: mrr_at_100
|
1421 |
+
value: 91.227
|
1422 |
+
- type: mrr_at_1000
|
1423 |
+
value: 91.229
|
1424 |
+
- type: mrr_at_3
|
1425 |
+
value: 90.57600000000001
|
1426 |
+
- type: mrr_at_5
|
1427 |
+
value: 90.912
|
1428 |
+
- type: ndcg_at_1
|
1429 |
+
value: 87.36
|
1430 |
+
- type: ndcg_at_10
|
1431 |
+
value: 73.076
|
1432 |
+
- type: ndcg_at_100
|
1433 |
+
value: 75.895
|
1434 |
+
- type: ndcg_at_1000
|
1435 |
+
value: 77.049
|
1436 |
+
- type: ndcg_at_3
|
1437 |
+
value: 68.929
|
1438 |
+
- type: ndcg_at_5
|
1439 |
+
value: 71.28
|
1440 |
+
- type: precision_at_1
|
1441 |
+
value: 87.36
|
1442 |
+
- type: precision_at_10
|
1443 |
+
value: 14.741000000000001
|
1444 |
+
- type: precision_at_100
|
1445 |
+
value: 1.694
|
1446 |
+
- type: precision_at_1000
|
1447 |
+
value: 0.185
|
1448 |
+
- type: precision_at_3
|
1449 |
+
value: 43.043
|
1450 |
+
- type: precision_at_5
|
1451 |
+
value: 27.681
|
1452 |
+
- type: recall_at_1
|
1453 |
+
value: 43.68
|
1454 |
+
- type: recall_at_10
|
1455 |
+
value: 73.707
|
1456 |
+
- type: recall_at_100
|
1457 |
+
value: 84.7
|
1458 |
+
- type: recall_at_1000
|
1459 |
+
value: 92.309
|
1460 |
+
- type: recall_at_3
|
1461 |
+
value: 64.564
|
1462 |
+
- type: recall_at_5
|
1463 |
+
value: 69.203
|
1464 |
+
- task:
|
1465 |
+
type: Classification
|
1466 |
+
dataset:
|
1467 |
+
name: MTEB ImdbClassification
|
1468 |
+
type: mteb/imdb
|
1469 |
+
config: default
|
1470 |
+
split: test
|
1471 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1472 |
+
metrics:
|
1473 |
+
- type: accuracy
|
1474 |
+
value: 96.75399999999999
|
1475 |
+
- type: ap
|
1476 |
+
value: 95.29389839242187
|
1477 |
+
- type: f1
|
1478 |
+
value: 96.75348377433475
|
1479 |
+
- task:
|
1480 |
+
type: Retrieval
|
1481 |
+
dataset:
|
1482 |
+
name: MTEB MSMARCO
|
1483 |
+
type: mteb/msmarco
|
1484 |
+
config: default
|
1485 |
+
split: dev
|
1486 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
1487 |
+
metrics:
|
1488 |
+
- type: map_at_1
|
1489 |
+
value: 25.176
|
1490 |
+
- type: map_at_10
|
1491 |
+
value: 38.598
|
1492 |
+
- type: map_at_100
|
1493 |
+
value: 39.707
|
1494 |
+
- type: map_at_1000
|
1495 |
+
value: 39.744
|
1496 |
+
- type: map_at_3
|
1497 |
+
value: 34.566
|
1498 |
+
- type: map_at_5
|
1499 |
+
value: 36.863
|
1500 |
+
- type: mrr_at_1
|
1501 |
+
value: 25.874000000000002
|
1502 |
+
- type: mrr_at_10
|
1503 |
+
value: 39.214
|
1504 |
+
- type: mrr_at_100
|
1505 |
+
value: 40.251
|
1506 |
+
- type: mrr_at_1000
|
1507 |
+
value: 40.281
|
1508 |
+
- type: mrr_at_3
|
1509 |
+
value: 35.291
|
1510 |
+
- type: mrr_at_5
|
1511 |
+
value: 37.545
|
1512 |
+
- type: ndcg_at_1
|
1513 |
+
value: 25.874000000000002
|
1514 |
+
- type: ndcg_at_10
|
1515 |
+
value: 45.98
|
1516 |
+
- type: ndcg_at_100
|
1517 |
+
value: 51.197
|
1518 |
+
- type: ndcg_at_1000
|
1519 |
+
value: 52.073
|
1520 |
+
- type: ndcg_at_3
|
1521 |
+
value: 37.785999999999994
|
1522 |
+
- type: ndcg_at_5
|
1523 |
+
value: 41.870000000000005
|
1524 |
+
- type: precision_at_1
|
1525 |
+
value: 25.874000000000002
|
1526 |
+
- type: precision_at_10
|
1527 |
+
value: 7.181
|
1528 |
+
- type: precision_at_100
|
1529 |
+
value: 0.979
|
1530 |
+
- type: precision_at_1000
|
1531 |
+
value: 0.106
|
1532 |
+
- type: precision_at_3
|
1533 |
+
value: 16.051000000000002
|
1534 |
+
- type: precision_at_5
|
1535 |
+
value: 11.713
|
1536 |
+
- type: recall_at_1
|
1537 |
+
value: 25.176
|
1538 |
+
- type: recall_at_10
|
1539 |
+
value: 68.67699999999999
|
1540 |
+
- type: recall_at_100
|
1541 |
+
value: 92.55
|
1542 |
+
- type: recall_at_1000
|
1543 |
+
value: 99.164
|
1544 |
+
- type: recall_at_3
|
1545 |
+
value: 46.372
|
1546 |
+
- type: recall_at_5
|
1547 |
+
value: 56.16
|
1548 |
+
- task:
|
1549 |
+
type: Classification
|
1550 |
+
dataset:
|
1551 |
+
name: MTEB MTOPDomainClassification (en)
|
1552 |
+
type: mteb/mtop_domain
|
1553 |
+
config: en
|
1554 |
+
split: test
|
1555 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1556 |
+
metrics:
|
1557 |
+
- type: accuracy
|
1558 |
+
value: 99.03784769721841
|
1559 |
+
- type: f1
|
1560 |
+
value: 98.97791641821495
|
1561 |
+
- task:
|
1562 |
+
type: Classification
|
1563 |
+
dataset:
|
1564 |
+
name: MTEB MTOPIntentClassification (en)
|
1565 |
+
type: mteb/mtop_intent
|
1566 |
+
config: en
|
1567 |
+
split: test
|
1568 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1569 |
+
metrics:
|
1570 |
+
- type: accuracy
|
1571 |
+
value: 91.88326493388054
|
1572 |
+
- type: f1
|
1573 |
+
value: 73.74809928034335
|
1574 |
+
- task:
|
1575 |
+
type: Classification
|
1576 |
+
dataset:
|
1577 |
+
name: MTEB MassiveIntentClassification (en)
|
1578 |
+
type: mteb/amazon_massive_intent
|
1579 |
+
config: en
|
1580 |
+
split: test
|
1581 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1582 |
+
metrics:
|
1583 |
+
- type: accuracy
|
1584 |
+
value: 85.41358439811701
|
1585 |
+
- type: f1
|
1586 |
+
value: 83.503679460639
|
1587 |
+
- task:
|
1588 |
+
type: Classification
|
1589 |
+
dataset:
|
1590 |
+
name: MTEB MassiveScenarioClassification (en)
|
1591 |
+
type: mteb/amazon_massive_scenario
|
1592 |
+
config: en
|
1593 |
+
split: test
|
1594 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1595 |
+
metrics:
|
1596 |
+
- type: accuracy
|
1597 |
+
value: 89.77135171486215
|
1598 |
+
- type: f1
|
1599 |
+
value: 88.89843747468366
|
1600 |
+
- task:
|
1601 |
+
type: Clustering
|
1602 |
+
dataset:
|
1603 |
+
name: MTEB MedrxivClusteringP2P
|
1604 |
+
type: mteb/medrxiv-clustering-p2p
|
1605 |
+
config: default
|
1606 |
+
split: test
|
1607 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1608 |
+
metrics:
|
1609 |
+
- type: v_measure
|
1610 |
+
value: 46.22695362087359
|
1611 |
+
- task:
|
1612 |
+
type: Clustering
|
1613 |
+
dataset:
|
1614 |
+
name: MTEB MedrxivClusteringS2S
|
1615 |
+
type: mteb/medrxiv-clustering-s2s
|
1616 |
+
config: default
|
1617 |
+
split: test
|
1618 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1619 |
+
metrics:
|
1620 |
+
- type: v_measure
|
1621 |
+
value: 44.132372165849425
|
1622 |
+
- task:
|
1623 |
+
type: Reranking
|
1624 |
+
dataset:
|
1625 |
+
name: MTEB MindSmallReranking
|
1626 |
+
type: mteb/mind_small
|
1627 |
+
config: default
|
1628 |
+
split: test
|
1629 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1630 |
+
metrics:
|
1631 |
+
- type: map
|
1632 |
+
value: 33.35680810650402
|
1633 |
+
- type: mrr
|
1634 |
+
value: 34.72625715637218
|
1635 |
+
- task:
|
1636 |
+
type: Retrieval
|
1637 |
+
dataset:
|
1638 |
+
name: MTEB NFCorpus
|
1639 |
+
type: mteb/nfcorpus
|
1640 |
+
config: default
|
1641 |
+
split: test
|
1642 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
1643 |
+
metrics:
|
1644 |
+
- type: map_at_1
|
1645 |
+
value: 7.165000000000001
|
1646 |
+
- type: map_at_10
|
1647 |
+
value: 15.424
|
1648 |
+
- type: map_at_100
|
1649 |
+
value: 20.28
|
1650 |
+
- type: map_at_1000
|
1651 |
+
value: 22.065
|
1652 |
+
- type: map_at_3
|
1653 |
+
value: 11.236
|
1654 |
+
- type: map_at_5
|
1655 |
+
value: 13.025999999999998
|
1656 |
+
- type: mrr_at_1
|
1657 |
+
value: 51.702999999999996
|
1658 |
+
- type: mrr_at_10
|
1659 |
+
value: 59.965
|
1660 |
+
- type: mrr_at_100
|
1661 |
+
value: 60.667
|
1662 |
+
- type: mrr_at_1000
|
1663 |
+
value: 60.702999999999996
|
1664 |
+
- type: mrr_at_3
|
1665 |
+
value: 58.772000000000006
|
1666 |
+
- type: mrr_at_5
|
1667 |
+
value: 59.267
|
1668 |
+
- type: ndcg_at_1
|
1669 |
+
value: 49.536
|
1670 |
+
- type: ndcg_at_10
|
1671 |
+
value: 40.6
|
1672 |
+
- type: ndcg_at_100
|
1673 |
+
value: 37.848
|
1674 |
+
- type: ndcg_at_1000
|
1675 |
+
value: 46.657
|
1676 |
+
- type: ndcg_at_3
|
1677 |
+
value: 46.117999999999995
|
1678 |
+
- type: ndcg_at_5
|
1679 |
+
value: 43.619
|
1680 |
+
- type: precision_at_1
|
1681 |
+
value: 51.393
|
1682 |
+
- type: precision_at_10
|
1683 |
+
value: 30.31
|
1684 |
+
- type: precision_at_100
|
1685 |
+
value: 9.972
|
1686 |
+
- type: precision_at_1000
|
1687 |
+
value: 2.329
|
1688 |
+
- type: precision_at_3
|
1689 |
+
value: 43.137
|
1690 |
+
- type: precision_at_5
|
1691 |
+
value: 37.585
|
1692 |
+
- type: recall_at_1
|
1693 |
+
value: 7.165000000000001
|
1694 |
+
- type: recall_at_10
|
1695 |
+
value: 19.689999999999998
|
1696 |
+
- type: recall_at_100
|
1697 |
+
value: 39.237
|
1698 |
+
- type: recall_at_1000
|
1699 |
+
value: 71.417
|
1700 |
+
- type: recall_at_3
|
1701 |
+
value: 12.247
|
1702 |
+
- type: recall_at_5
|
1703 |
+
value: 14.902999999999999
|
1704 |
+
- task:
|
1705 |
+
type: Retrieval
|
1706 |
+
dataset:
|
1707 |
+
name: MTEB NQ
|
1708 |
+
type: mteb/nq
|
1709 |
+
config: default
|
1710 |
+
split: test
|
1711 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
1712 |
+
metrics:
|
1713 |
+
- type: map_at_1
|
1714 |
+
value: 42.653999999999996
|
1715 |
+
- type: map_at_10
|
1716 |
+
value: 59.611999999999995
|
1717 |
+
- type: map_at_100
|
1718 |
+
value: 60.32300000000001
|
1719 |
+
- type: map_at_1000
|
1720 |
+
value: 60.336
|
1721 |
+
- type: map_at_3
|
1722 |
+
value: 55.584999999999994
|
1723 |
+
- type: map_at_5
|
1724 |
+
value: 58.19
|
1725 |
+
- type: mrr_at_1
|
1726 |
+
value: 47.683
|
1727 |
+
- type: mrr_at_10
|
1728 |
+
value: 62.06700000000001
|
1729 |
+
- type: mrr_at_100
|
1730 |
+
value: 62.537
|
1731 |
+
- type: mrr_at_1000
|
1732 |
+
value: 62.544999999999995
|
1733 |
+
- type: mrr_at_3
|
1734 |
+
value: 59.178
|
1735 |
+
- type: mrr_at_5
|
1736 |
+
value: 61.034
|
1737 |
+
- type: ndcg_at_1
|
1738 |
+
value: 47.654
|
1739 |
+
- type: ndcg_at_10
|
1740 |
+
value: 67.001
|
1741 |
+
- type: ndcg_at_100
|
1742 |
+
value: 69.73899999999999
|
1743 |
+
- type: ndcg_at_1000
|
1744 |
+
value: 69.986
|
1745 |
+
- type: ndcg_at_3
|
1746 |
+
value: 59.95700000000001
|
1747 |
+
- type: ndcg_at_5
|
1748 |
+
value: 64.025
|
1749 |
+
- type: precision_at_1
|
1750 |
+
value: 47.654
|
1751 |
+
- type: precision_at_10
|
1752 |
+
value: 10.367999999999999
|
1753 |
+
- type: precision_at_100
|
1754 |
+
value: 1.192
|
1755 |
+
- type: precision_at_1000
|
1756 |
+
value: 0.121
|
1757 |
+
- type: precision_at_3
|
1758 |
+
value: 26.651000000000003
|
1759 |
+
- type: precision_at_5
|
1760 |
+
value: 18.459
|
1761 |
+
- type: recall_at_1
|
1762 |
+
value: 42.653999999999996
|
1763 |
+
- type: recall_at_10
|
1764 |
+
value: 86.619
|
1765 |
+
- type: recall_at_100
|
1766 |
+
value: 98.04899999999999
|
1767 |
+
- type: recall_at_1000
|
1768 |
+
value: 99.812
|
1769 |
+
- type: recall_at_3
|
1770 |
+
value: 68.987
|
1771 |
+
- type: recall_at_5
|
1772 |
+
value: 78.158
|
1773 |
+
- task:
|
1774 |
+
type: Retrieval
|
1775 |
+
dataset:
|
1776 |
+
name: MTEB QuoraRetrieval
|
1777 |
+
type: mteb/quora
|
1778 |
+
config: default
|
1779 |
+
split: test
|
1780 |
+
revision: None
|
1781 |
+
metrics:
|
1782 |
+
- type: map_at_1
|
1783 |
+
value: 72.538
|
1784 |
+
- type: map_at_10
|
1785 |
+
value: 86.702
|
1786 |
+
- type: map_at_100
|
1787 |
+
value: 87.31
|
1788 |
+
- type: map_at_1000
|
1789 |
+
value: 87.323
|
1790 |
+
- type: map_at_3
|
1791 |
+
value: 83.87
|
1792 |
+
- type: map_at_5
|
1793 |
+
value: 85.682
|
1794 |
+
- type: mrr_at_1
|
1795 |
+
value: 83.31
|
1796 |
+
- type: mrr_at_10
|
1797 |
+
value: 89.225
|
1798 |
+
- type: mrr_at_100
|
1799 |
+
value: 89.30399999999999
|
1800 |
+
- type: mrr_at_1000
|
1801 |
+
value: 89.30399999999999
|
1802 |
+
- type: mrr_at_3
|
1803 |
+
value: 88.44300000000001
|
1804 |
+
- type: mrr_at_5
|
1805 |
+
value: 89.005
|
1806 |
+
- type: ndcg_at_1
|
1807 |
+
value: 83.32000000000001
|
1808 |
+
- type: ndcg_at_10
|
1809 |
+
value: 90.095
|
1810 |
+
- type: ndcg_at_100
|
1811 |
+
value: 91.12
|
1812 |
+
- type: ndcg_at_1000
|
1813 |
+
value: 91.179
|
1814 |
+
- type: ndcg_at_3
|
1815 |
+
value: 87.606
|
1816 |
+
- type: ndcg_at_5
|
1817 |
+
value: 89.031
|
1818 |
+
- type: precision_at_1
|
1819 |
+
value: 83.32000000000001
|
1820 |
+
- type: precision_at_10
|
1821 |
+
value: 13.641
|
1822 |
+
- type: precision_at_100
|
1823 |
+
value: 1.541
|
1824 |
+
- type: precision_at_1000
|
1825 |
+
value: 0.157
|
1826 |
+
- type: precision_at_3
|
1827 |
+
value: 38.377
|
1828 |
+
- type: precision_at_5
|
1829 |
+
value: 25.162000000000003
|
1830 |
+
- type: recall_at_1
|
1831 |
+
value: 72.538
|
1832 |
+
- type: recall_at_10
|
1833 |
+
value: 96.47200000000001
|
1834 |
+
- type: recall_at_100
|
1835 |
+
value: 99.785
|
1836 |
+
- type: recall_at_1000
|
1837 |
+
value: 99.99900000000001
|
1838 |
+
- type: recall_at_3
|
1839 |
+
value: 89.278
|
1840 |
+
- type: recall_at_5
|
1841 |
+
value: 93.367
|
1842 |
+
- task:
|
1843 |
+
type: Clustering
|
1844 |
+
dataset:
|
1845 |
+
name: MTEB RedditClustering
|
1846 |
+
type: mteb/reddit-clustering
|
1847 |
+
config: default
|
1848 |
+
split: test
|
1849 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1850 |
+
metrics:
|
1851 |
+
- type: v_measure
|
1852 |
+
value: 73.55219145406065
|
1853 |
+
- task:
|
1854 |
+
type: Clustering
|
1855 |
+
dataset:
|
1856 |
+
name: MTEB RedditClusteringP2P
|
1857 |
+
type: mteb/reddit-clustering-p2p
|
1858 |
+
config: default
|
1859 |
+
split: test
|
1860 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1861 |
+
metrics:
|
1862 |
+
- type: v_measure
|
1863 |
+
value: 74.13437105242755
|
1864 |
+
- task:
|
1865 |
+
type: Retrieval
|
1866 |
+
dataset:
|
1867 |
+
name: MTEB SCIDOCS
|
1868 |
+
type: mteb/scidocs
|
1869 |
+
config: default
|
1870 |
+
split: test
|
1871 |
+
revision: None
|
1872 |
+
metrics:
|
1873 |
+
- type: map_at_1
|
1874 |
+
value: 6.873
|
1875 |
+
- type: map_at_10
|
1876 |
+
value: 17.944
|
1877 |
+
- type: map_at_100
|
1878 |
+
value: 21.171
|
1879 |
+
- type: map_at_1000
|
1880 |
+
value: 21.528
|
1881 |
+
- type: map_at_3
|
1882 |
+
value: 12.415
|
1883 |
+
- type: map_at_5
|
1884 |
+
value: 15.187999999999999
|
1885 |
+
- type: mrr_at_1
|
1886 |
+
value: 33.800000000000004
|
1887 |
+
- type: mrr_at_10
|
1888 |
+
value: 46.455
|
1889 |
+
- type: mrr_at_100
|
1890 |
+
value: 47.378
|
1891 |
+
- type: mrr_at_1000
|
1892 |
+
value: 47.394999999999996
|
1893 |
+
- type: mrr_at_3
|
1894 |
+
value: 42.367
|
1895 |
+
- type: mrr_at_5
|
1896 |
+
value: 44.972
|
1897 |
+
- type: ndcg_at_1
|
1898 |
+
value: 33.800000000000004
|
1899 |
+
- type: ndcg_at_10
|
1900 |
+
value: 28.907
|
1901 |
+
- type: ndcg_at_100
|
1902 |
+
value: 39.695
|
1903 |
+
- type: ndcg_at_1000
|
1904 |
+
value: 44.582
|
1905 |
+
- type: ndcg_at_3
|
1906 |
+
value: 26.949
|
1907 |
+
- type: ndcg_at_5
|
1908 |
+
value: 23.988
|
1909 |
+
- type: precision_at_1
|
1910 |
+
value: 33.800000000000004
|
1911 |
+
- type: precision_at_10
|
1912 |
+
value: 15.079999999999998
|
1913 |
+
- type: precision_at_100
|
1914 |
+
value: 3.056
|
1915 |
+
- type: precision_at_1000
|
1916 |
+
value: 0.42100000000000004
|
1917 |
+
- type: precision_at_3
|
1918 |
+
value: 25.167
|
1919 |
+
- type: precision_at_5
|
1920 |
+
value: 21.26
|
1921 |
+
- type: recall_at_1
|
1922 |
+
value: 6.873
|
1923 |
+
- type: recall_at_10
|
1924 |
+
value: 30.568
|
1925 |
+
- type: recall_at_100
|
1926 |
+
value: 62.062
|
1927 |
+
- type: recall_at_1000
|
1928 |
+
value: 85.37700000000001
|
1929 |
+
- type: recall_at_3
|
1930 |
+
value: 15.312999999999999
|
1931 |
+
- type: recall_at_5
|
1932 |
+
value: 21.575
|
1933 |
+
- task:
|
1934 |
+
type: STS
|
1935 |
+
dataset:
|
1936 |
+
name: MTEB SICK-R
|
1937 |
+
type: mteb/sickr-sts
|
1938 |
+
config: default
|
1939 |
+
split: test
|
1940 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1941 |
+
metrics:
|
1942 |
+
- type: cos_sim_pearson
|
1943 |
+
value: 82.37009118256057
|
1944 |
+
- type: cos_sim_spearman
|
1945 |
+
value: 79.27986395671529
|
1946 |
+
- type: euclidean_pearson
|
1947 |
+
value: 79.18037715442115
|
1948 |
+
- type: euclidean_spearman
|
1949 |
+
value: 79.28004791561621
|
1950 |
+
- type: manhattan_pearson
|
1951 |
+
value: 79.34062972800541
|
1952 |
+
- type: manhattan_spearman
|
1953 |
+
value: 79.43106695543402
|
1954 |
+
- task:
|
1955 |
+
type: STS
|
1956 |
+
dataset:
|
1957 |
+
name: MTEB STS12
|
1958 |
+
type: mteb/sts12-sts
|
1959 |
+
config: default
|
1960 |
+
split: test
|
1961 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1962 |
+
metrics:
|
1963 |
+
- type: cos_sim_pearson
|
1964 |
+
value: 87.48474767383833
|
1965 |
+
- type: cos_sim_spearman
|
1966 |
+
value: 79.54505388752513
|
1967 |
+
- type: euclidean_pearson
|
1968 |
+
value: 83.43282704179565
|
1969 |
+
- type: euclidean_spearman
|
1970 |
+
value: 79.54579919925405
|
1971 |
+
- type: manhattan_pearson
|
1972 |
+
value: 83.77564492427952
|
1973 |
+
- type: manhattan_spearman
|
1974 |
+
value: 79.84558396989286
|
1975 |
+
- task:
|
1976 |
+
type: STS
|
1977 |
+
dataset:
|
1978 |
+
name: MTEB STS13
|
1979 |
+
type: mteb/sts13-sts
|
1980 |
+
config: default
|
1981 |
+
split: test
|
1982 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1983 |
+
metrics:
|
1984 |
+
- type: cos_sim_pearson
|
1985 |
+
value: 88.803698035802
|
1986 |
+
- type: cos_sim_spearman
|
1987 |
+
value: 88.83451367754881
|
1988 |
+
- type: euclidean_pearson
|
1989 |
+
value: 88.28939285711628
|
1990 |
+
- type: euclidean_spearman
|
1991 |
+
value: 88.83528996073112
|
1992 |
+
- type: manhattan_pearson
|
1993 |
+
value: 88.28017412671795
|
1994 |
+
- type: manhattan_spearman
|
1995 |
+
value: 88.9228828016344
|
1996 |
+
- task:
|
1997 |
+
type: STS
|
1998 |
+
dataset:
|
1999 |
+
name: MTEB STS14
|
2000 |
+
type: mteb/sts14-sts
|
2001 |
+
config: default
|
2002 |
+
split: test
|
2003 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2004 |
+
metrics:
|
2005 |
+
- type: cos_sim_pearson
|
2006 |
+
value: 85.27469288153428
|
2007 |
+
- type: cos_sim_spearman
|
2008 |
+
value: 83.87477064876288
|
2009 |
+
- type: euclidean_pearson
|
2010 |
+
value: 84.2601737035379
|
2011 |
+
- type: euclidean_spearman
|
2012 |
+
value: 83.87431082479074
|
2013 |
+
- type: manhattan_pearson
|
2014 |
+
value: 84.3621547772745
|
2015 |
+
- type: manhattan_spearman
|
2016 |
+
value: 84.12094375000423
|
2017 |
+
- task:
|
2018 |
+
type: STS
|
2019 |
+
dataset:
|
2020 |
+
name: MTEB STS15
|
2021 |
+
type: mteb/sts15-sts
|
2022 |
+
config: default
|
2023 |
+
split: test
|
2024 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2025 |
+
metrics:
|
2026 |
+
- type: cos_sim_pearson
|
2027 |
+
value: 88.12749863201587
|
2028 |
+
- type: cos_sim_spearman
|
2029 |
+
value: 88.54287568368565
|
2030 |
+
- type: euclidean_pearson
|
2031 |
+
value: 87.90429700607999
|
2032 |
+
- type: euclidean_spearman
|
2033 |
+
value: 88.5437689576261
|
2034 |
+
- type: manhattan_pearson
|
2035 |
+
value: 88.19276653356833
|
2036 |
+
- type: manhattan_spearman
|
2037 |
+
value: 88.99995393814679
|
2038 |
+
- task:
|
2039 |
+
type: STS
|
2040 |
+
dataset:
|
2041 |
+
name: MTEB STS16
|
2042 |
+
type: mteb/sts16-sts
|
2043 |
+
config: default
|
2044 |
+
split: test
|
2045 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2046 |
+
metrics:
|
2047 |
+
- type: cos_sim_pearson
|
2048 |
+
value: 85.68398747560902
|
2049 |
+
- type: cos_sim_spearman
|
2050 |
+
value: 86.48815303460574
|
2051 |
+
- type: euclidean_pearson
|
2052 |
+
value: 85.52356631237954
|
2053 |
+
- type: euclidean_spearman
|
2054 |
+
value: 86.486391949551
|
2055 |
+
- type: manhattan_pearson
|
2056 |
+
value: 85.67267981761788
|
2057 |
+
- type: manhattan_spearman
|
2058 |
+
value: 86.7073696332485
|
2059 |
+
- task:
|
2060 |
+
type: STS
|
2061 |
+
dataset:
|
2062 |
+
name: MTEB STS17 (en-en)
|
2063 |
+
type: mteb/sts17-crosslingual-sts
|
2064 |
+
config: en-en
|
2065 |
+
split: test
|
2066 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2067 |
+
metrics:
|
2068 |
+
- type: cos_sim_pearson
|
2069 |
+
value: 88.9057107443124
|
2070 |
+
- type: cos_sim_spearman
|
2071 |
+
value: 88.7312168757697
|
2072 |
+
- type: euclidean_pearson
|
2073 |
+
value: 88.72810439714794
|
2074 |
+
- type: euclidean_spearman
|
2075 |
+
value: 88.71976185854771
|
2076 |
+
- type: manhattan_pearson
|
2077 |
+
value: 88.50433745949111
|
2078 |
+
- type: manhattan_spearman
|
2079 |
+
value: 88.51726175544195
|
2080 |
+
- task:
|
2081 |
+
type: STS
|
2082 |
+
dataset:
|
2083 |
+
name: MTEB STS22 (en)
|
2084 |
+
type: mteb/sts22-crosslingual-sts
|
2085 |
+
config: en
|
2086 |
+
split: test
|
2087 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
2088 |
+
metrics:
|
2089 |
+
- type: cos_sim_pearson
|
2090 |
+
value: 67.59391795109886
|
2091 |
+
- type: cos_sim_spearman
|
2092 |
+
value: 66.87613008631367
|
2093 |
+
- type: euclidean_pearson
|
2094 |
+
value: 69.23198488262217
|
2095 |
+
- type: euclidean_spearman
|
2096 |
+
value: 66.85427723013692
|
2097 |
+
- type: manhattan_pearson
|
2098 |
+
value: 69.50730124841084
|
2099 |
+
- type: manhattan_spearman
|
2100 |
+
value: 67.10404669820792
|
2101 |
+
- task:
|
2102 |
+
type: STS
|
2103 |
+
dataset:
|
2104 |
+
name: MTEB STSBenchmark
|
2105 |
+
type: mteb/stsbenchmark-sts
|
2106 |
+
config: default
|
2107 |
+
split: test
|
2108 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2109 |
+
metrics:
|
2110 |
+
- type: cos_sim_pearson
|
2111 |
+
value: 87.0820605344619
|
2112 |
+
- type: cos_sim_spearman
|
2113 |
+
value: 86.8518089863434
|
2114 |
+
- type: euclidean_pearson
|
2115 |
+
value: 86.31087134689284
|
2116 |
+
- type: euclidean_spearman
|
2117 |
+
value: 86.8518520517941
|
2118 |
+
- type: manhattan_pearson
|
2119 |
+
value: 86.47203796160612
|
2120 |
+
- type: manhattan_spearman
|
2121 |
+
value: 87.1080149734421
|
2122 |
+
- task:
|
2123 |
+
type: Reranking
|
2124 |
+
dataset:
|
2125 |
+
name: MTEB SciDocsRR
|
2126 |
+
type: mteb/scidocs-reranking
|
2127 |
+
config: default
|
2128 |
+
split: test
|
2129 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2130 |
+
metrics:
|
2131 |
+
- type: map
|
2132 |
+
value: 89.09255369305481
|
2133 |
+
- type: mrr
|
2134 |
+
value: 97.10323445617563
|
2135 |
+
- task:
|
2136 |
+
type: Retrieval
|
2137 |
+
dataset:
|
2138 |
+
name: MTEB SciFact
|
2139 |
+
type: mteb/scifact
|
2140 |
+
config: default
|
2141 |
+
split: test
|
2142 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
2143 |
+
metrics:
|
2144 |
+
- type: map_at_1
|
2145 |
+
value: 61.260999999999996
|
2146 |
+
- type: map_at_10
|
2147 |
+
value: 74.043
|
2148 |
+
- type: map_at_100
|
2149 |
+
value: 74.37700000000001
|
2150 |
+
- type: map_at_1000
|
2151 |
+
value: 74.384
|
2152 |
+
- type: map_at_3
|
2153 |
+
value: 71.222
|
2154 |
+
- type: map_at_5
|
2155 |
+
value: 72.875
|
2156 |
+
- type: mrr_at_1
|
2157 |
+
value: 64.333
|
2158 |
+
- type: mrr_at_10
|
2159 |
+
value: 74.984
|
2160 |
+
- type: mrr_at_100
|
2161 |
+
value: 75.247
|
2162 |
+
- type: mrr_at_1000
|
2163 |
+
value: 75.25500000000001
|
2164 |
+
- type: mrr_at_3
|
2165 |
+
value: 73.167
|
2166 |
+
- type: mrr_at_5
|
2167 |
+
value: 74.35000000000001
|
2168 |
+
- type: ndcg_at_1
|
2169 |
+
value: 64.333
|
2170 |
+
- type: ndcg_at_10
|
2171 |
+
value: 79.06
|
2172 |
+
- type: ndcg_at_100
|
2173 |
+
value: 80.416
|
2174 |
+
- type: ndcg_at_1000
|
2175 |
+
value: 80.55600000000001
|
2176 |
+
- type: ndcg_at_3
|
2177 |
+
value: 74.753
|
2178 |
+
- type: ndcg_at_5
|
2179 |
+
value: 76.97500000000001
|
2180 |
+
- type: precision_at_1
|
2181 |
+
value: 64.333
|
2182 |
+
- type: precision_at_10
|
2183 |
+
value: 10.567
|
2184 |
+
- type: precision_at_100
|
2185 |
+
value: 1.1199999999999999
|
2186 |
+
- type: precision_at_1000
|
2187 |
+
value: 0.11299999999999999
|
2188 |
+
- type: precision_at_3
|
2189 |
+
value: 29.889
|
2190 |
+
- type: precision_at_5
|
2191 |
+
value: 19.533
|
2192 |
+
- type: recall_at_1
|
2193 |
+
value: 61.260999999999996
|
2194 |
+
- type: recall_at_10
|
2195 |
+
value: 93.167
|
2196 |
+
- type: recall_at_100
|
2197 |
+
value: 99.0
|
2198 |
+
- type: recall_at_1000
|
2199 |
+
value: 100.0
|
2200 |
+
- type: recall_at_3
|
2201 |
+
value: 81.667
|
2202 |
+
- type: recall_at_5
|
2203 |
+
value: 87.394
|
2204 |
+
- task:
|
2205 |
+
type: PairClassification
|
2206 |
+
dataset:
|
2207 |
+
name: MTEB SprintDuplicateQuestions
|
2208 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2209 |
+
config: default
|
2210 |
+
split: test
|
2211 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2212 |
+
metrics:
|
2213 |
+
- type: cos_sim_accuracy
|
2214 |
+
value: 99.71980198019801
|
2215 |
+
- type: cos_sim_ap
|
2216 |
+
value: 92.81616007802704
|
2217 |
+
- type: cos_sim_f1
|
2218 |
+
value: 85.17548454688318
|
2219 |
+
- type: cos_sim_precision
|
2220 |
+
value: 89.43894389438944
|
2221 |
+
- type: cos_sim_recall
|
2222 |
+
value: 81.3
|
2223 |
+
- type: dot_accuracy
|
2224 |
+
value: 99.71980198019801
|
2225 |
+
- type: dot_ap
|
2226 |
+
value: 92.81398760591358
|
2227 |
+
- type: dot_f1
|
2228 |
+
value: 85.17548454688318
|
2229 |
+
- type: dot_precision
|
2230 |
+
value: 89.43894389438944
|
2231 |
+
- type: dot_recall
|
2232 |
+
value: 81.3
|
2233 |
+
- type: euclidean_accuracy
|
2234 |
+
value: 99.71980198019801
|
2235 |
+
- type: euclidean_ap
|
2236 |
+
value: 92.81560637245072
|
2237 |
+
- type: euclidean_f1
|
2238 |
+
value: 85.17548454688318
|
2239 |
+
- type: euclidean_precision
|
2240 |
+
value: 89.43894389438944
|
2241 |
+
- type: euclidean_recall
|
2242 |
+
value: 81.3
|
2243 |
+
- type: manhattan_accuracy
|
2244 |
+
value: 99.73069306930694
|
2245 |
+
- type: manhattan_ap
|
2246 |
+
value: 93.14005487480794
|
2247 |
+
- type: manhattan_f1
|
2248 |
+
value: 85.56263269639068
|
2249 |
+
- type: manhattan_precision
|
2250 |
+
value: 91.17647058823529
|
2251 |
+
- type: manhattan_recall
|
2252 |
+
value: 80.60000000000001
|
2253 |
+
- type: max_accuracy
|
2254 |
+
value: 99.73069306930694
|
2255 |
+
- type: max_ap
|
2256 |
+
value: 93.14005487480794
|
2257 |
+
- type: max_f1
|
2258 |
+
value: 85.56263269639068
|
2259 |
+
- task:
|
2260 |
+
type: Clustering
|
2261 |
+
dataset:
|
2262 |
+
name: MTEB StackExchangeClustering
|
2263 |
+
type: mteb/stackexchange-clustering
|
2264 |
+
config: default
|
2265 |
+
split: test
|
2266 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2267 |
+
metrics:
|
2268 |
+
- type: v_measure
|
2269 |
+
value: 79.86443362395185
|
2270 |
+
- task:
|
2271 |
+
type: Clustering
|
2272 |
+
dataset:
|
2273 |
+
name: MTEB StackExchangeClusteringP2P
|
2274 |
+
type: mteb/stackexchange-clustering-p2p
|
2275 |
+
config: default
|
2276 |
+
split: test
|
2277 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2278 |
+
metrics:
|
2279 |
+
- type: v_measure
|
2280 |
+
value: 49.40897096662564
|
2281 |
+
- task:
|
2282 |
+
type: Reranking
|
2283 |
+
dataset:
|
2284 |
+
name: MTEB StackOverflowDupQuestions
|
2285 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2286 |
+
config: default
|
2287 |
+
split: test
|
2288 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2289 |
+
metrics:
|
2290 |
+
- type: map
|
2291 |
+
value: 55.66040806627947
|
2292 |
+
- type: mrr
|
2293 |
+
value: 56.58670475766064
|
2294 |
+
- task:
|
2295 |
+
type: Summarization
|
2296 |
+
dataset:
|
2297 |
+
name: MTEB SummEval
|
2298 |
+
type: mteb/summeval
|
2299 |
+
config: default
|
2300 |
+
split: test
|
2301 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2302 |
+
metrics:
|
2303 |
+
- type: cos_sim_pearson
|
2304 |
+
value: 31.51015090598575
|
2305 |
+
- type: cos_sim_spearman
|
2306 |
+
value: 31.35016454939226
|
2307 |
+
- type: dot_pearson
|
2308 |
+
value: 31.5150068731
|
2309 |
+
- type: dot_spearman
|
2310 |
+
value: 31.34790869023487
|
2311 |
+
- task:
|
2312 |
+
type: Retrieval
|
2313 |
+
dataset:
|
2314 |
+
name: MTEB TRECCOVID
|
2315 |
+
type: mteb/trec-covid
|
2316 |
+
config: default
|
2317 |
+
split: test
|
2318 |
+
revision: None
|
2319 |
+
metrics:
|
2320 |
+
- type: map_at_1
|
2321 |
+
value: 0.254
|
2322 |
+
- type: map_at_10
|
2323 |
+
value: 2.064
|
2324 |
+
- type: map_at_100
|
2325 |
+
value: 12.909
|
2326 |
+
- type: map_at_1000
|
2327 |
+
value: 31.761
|
2328 |
+
- type: map_at_3
|
2329 |
+
value: 0.738
|
2330 |
+
- type: map_at_5
|
2331 |
+
value: 1.155
|
2332 |
+
- type: mrr_at_1
|
2333 |
+
value: 96.0
|
2334 |
+
- type: mrr_at_10
|
2335 |
+
value: 98.0
|
2336 |
+
- type: mrr_at_100
|
2337 |
+
value: 98.0
|
2338 |
+
- type: mrr_at_1000
|
2339 |
+
value: 98.0
|
2340 |
+
- type: mrr_at_3
|
2341 |
+
value: 98.0
|
2342 |
+
- type: mrr_at_5
|
2343 |
+
value: 98.0
|
2344 |
+
- type: ndcg_at_1
|
2345 |
+
value: 93.0
|
2346 |
+
- type: ndcg_at_10
|
2347 |
+
value: 82.258
|
2348 |
+
- type: ndcg_at_100
|
2349 |
+
value: 64.34
|
2350 |
+
- type: ndcg_at_1000
|
2351 |
+
value: 57.912
|
2352 |
+
- type: ndcg_at_3
|
2353 |
+
value: 90.827
|
2354 |
+
- type: ndcg_at_5
|
2355 |
+
value: 86.79
|
2356 |
+
- type: precision_at_1
|
2357 |
+
value: 96.0
|
2358 |
+
- type: precision_at_10
|
2359 |
+
value: 84.8
|
2360 |
+
- type: precision_at_100
|
2361 |
+
value: 66.0
|
2362 |
+
- type: precision_at_1000
|
2363 |
+
value: 25.356
|
2364 |
+
- type: precision_at_3
|
2365 |
+
value: 94.667
|
2366 |
+
- type: precision_at_5
|
2367 |
+
value: 90.4
|
2368 |
+
- type: recall_at_1
|
2369 |
+
value: 0.254
|
2370 |
+
- type: recall_at_10
|
2371 |
+
value: 2.1950000000000003
|
2372 |
+
- type: recall_at_100
|
2373 |
+
value: 16.088
|
2374 |
+
- type: recall_at_1000
|
2375 |
+
value: 54.559000000000005
|
2376 |
+
- type: recall_at_3
|
2377 |
+
value: 0.75
|
2378 |
+
- type: recall_at_5
|
2379 |
+
value: 1.191
|
2380 |
+
- task:
|
2381 |
+
type: Retrieval
|
2382 |
+
dataset:
|
2383 |
+
name: MTEB Touche2020
|
2384 |
+
type: mteb/touche2020
|
2385 |
+
config: default
|
2386 |
+
split: test
|
2387 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
2388 |
+
metrics:
|
2389 |
+
- type: map_at_1
|
2390 |
+
value: 2.976
|
2391 |
+
- type: map_at_10
|
2392 |
+
value: 11.389000000000001
|
2393 |
+
- type: map_at_100
|
2394 |
+
value: 18.429000000000002
|
2395 |
+
- type: map_at_1000
|
2396 |
+
value: 20.113
|
2397 |
+
- type: map_at_3
|
2398 |
+
value: 6.483
|
2399 |
+
- type: map_at_5
|
2400 |
+
value: 8.770999999999999
|
2401 |
+
- type: mrr_at_1
|
2402 |
+
value: 40.816
|
2403 |
+
- type: mrr_at_10
|
2404 |
+
value: 58.118
|
2405 |
+
- type: mrr_at_100
|
2406 |
+
value: 58.489999999999995
|
2407 |
+
- type: mrr_at_1000
|
2408 |
+
value: 58.489999999999995
|
2409 |
+
- type: mrr_at_3
|
2410 |
+
value: 53.061
|
2411 |
+
- type: mrr_at_5
|
2412 |
+
value: 57.041
|
2413 |
+
- type: ndcg_at_1
|
2414 |
+
value: 40.816
|
2415 |
+
- type: ndcg_at_10
|
2416 |
+
value: 30.567
|
2417 |
+
- type: ndcg_at_100
|
2418 |
+
value: 42.44
|
2419 |
+
- type: ndcg_at_1000
|
2420 |
+
value: 53.480000000000004
|
2421 |
+
- type: ndcg_at_3
|
2422 |
+
value: 36.016
|
2423 |
+
- type: ndcg_at_5
|
2424 |
+
value: 34.257
|
2425 |
+
- type: precision_at_1
|
2426 |
+
value: 42.857
|
2427 |
+
- type: precision_at_10
|
2428 |
+
value: 25.714
|
2429 |
+
- type: precision_at_100
|
2430 |
+
value: 8.429
|
2431 |
+
- type: precision_at_1000
|
2432 |
+
value: 1.5939999999999999
|
2433 |
+
- type: precision_at_3
|
2434 |
+
value: 36.735
|
2435 |
+
- type: precision_at_5
|
2436 |
+
value: 33.878
|
2437 |
+
- type: recall_at_1
|
2438 |
+
value: 2.976
|
2439 |
+
- type: recall_at_10
|
2440 |
+
value: 17.854999999999997
|
2441 |
+
- type: recall_at_100
|
2442 |
+
value: 51.833
|
2443 |
+
- type: recall_at_1000
|
2444 |
+
value: 86.223
|
2445 |
+
- type: recall_at_3
|
2446 |
+
value: 7.887
|
2447 |
+
- type: recall_at_5
|
2448 |
+
value: 12.026
|
2449 |
+
- task:
|
2450 |
+
type: Classification
|
2451 |
+
dataset:
|
2452 |
+
name: MTEB ToxicConversationsClassification
|
2453 |
+
type: mteb/toxic_conversations_50k
|
2454 |
+
config: default
|
2455 |
+
split: test
|
2456 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2457 |
+
metrics:
|
2458 |
+
- type: accuracy
|
2459 |
+
value: 85.1174
|
2460 |
+
- type: ap
|
2461 |
+
value: 30.169441069345748
|
2462 |
+
- type: f1
|
2463 |
+
value: 69.79254701873245
|
2464 |
+
- task:
|
2465 |
+
type: Classification
|
2466 |
+
dataset:
|
2467 |
+
name: MTEB TweetSentimentExtractionClassification
|
2468 |
+
type: mteb/tweet_sentiment_extraction
|
2469 |
+
config: default
|
2470 |
+
split: test
|
2471 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2472 |
+
metrics:
|
2473 |
+
- type: accuracy
|
2474 |
+
value: 72.58347481607245
|
2475 |
+
- type: f1
|
2476 |
+
value: 72.74877295564937
|
2477 |
+
- task:
|
2478 |
+
type: Clustering
|
2479 |
+
dataset:
|
2480 |
+
name: MTEB TwentyNewsgroupsClustering
|
2481 |
+
type: mteb/twentynewsgroups-clustering
|
2482 |
+
config: default
|
2483 |
+
split: test
|
2484 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2485 |
+
metrics:
|
2486 |
+
- type: v_measure
|
2487 |
+
value: 53.90586138221305
|
2488 |
+
- task:
|
2489 |
+
type: PairClassification
|
2490 |
+
dataset:
|
2491 |
+
name: MTEB TwitterSemEval2015
|
2492 |
+
type: mteb/twittersemeval2015-pairclassification
|
2493 |
+
config: default
|
2494 |
+
split: test
|
2495 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2496 |
+
metrics:
|
2497 |
+
- type: cos_sim_accuracy
|
2498 |
+
value: 87.35769207844072
|
2499 |
+
- type: cos_sim_ap
|
2500 |
+
value: 77.9645072410354
|
2501 |
+
- type: cos_sim_f1
|
2502 |
+
value: 71.32352941176471
|
2503 |
+
- type: cos_sim_precision
|
2504 |
+
value: 66.5903890160183
|
2505 |
+
- type: cos_sim_recall
|
2506 |
+
value: 76.78100263852242
|
2507 |
+
- type: dot_accuracy
|
2508 |
+
value: 87.37557370209214
|
2509 |
+
- type: dot_ap
|
2510 |
+
value: 77.96250046429908
|
2511 |
+
- type: dot_f1
|
2512 |
+
value: 71.28932757557064
|
2513 |
+
- type: dot_precision
|
2514 |
+
value: 66.95249130938586
|
2515 |
+
- type: dot_recall
|
2516 |
+
value: 76.22691292875989
|
2517 |
+
- type: euclidean_accuracy
|
2518 |
+
value: 87.35173153722357
|
2519 |
+
- type: euclidean_ap
|
2520 |
+
value: 77.96520460741593
|
2521 |
+
- type: euclidean_f1
|
2522 |
+
value: 71.32470733210104
|
2523 |
+
- type: euclidean_precision
|
2524 |
+
value: 66.91329479768785
|
2525 |
+
- type: euclidean_recall
|
2526 |
+
value: 76.35883905013192
|
2527 |
+
- type: manhattan_accuracy
|
2528 |
+
value: 87.25636287774931
|
2529 |
+
- type: manhattan_ap
|
2530 |
+
value: 77.77752485611796
|
2531 |
+
- type: manhattan_f1
|
2532 |
+
value: 71.18148599269183
|
2533 |
+
- type: manhattan_precision
|
2534 |
+
value: 66.10859728506787
|
2535 |
+
- type: manhattan_recall
|
2536 |
+
value: 77.0976253298153
|
2537 |
+
- type: max_accuracy
|
2538 |
+
value: 87.37557370209214
|
2539 |
+
- type: max_ap
|
2540 |
+
value: 77.96520460741593
|
2541 |
+
- type: max_f1
|
2542 |
+
value: 71.32470733210104
|
2543 |
+
- task:
|
2544 |
+
type: PairClassification
|
2545 |
+
dataset:
|
2546 |
+
name: MTEB TwitterURLCorpus
|
2547 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2548 |
+
config: default
|
2549 |
+
split: test
|
2550 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2551 |
+
metrics:
|
2552 |
+
- type: cos_sim_accuracy
|
2553 |
+
value: 89.38176737687739
|
2554 |
+
- type: cos_sim_ap
|
2555 |
+
value: 86.58811861657401
|
2556 |
+
- type: cos_sim_f1
|
2557 |
+
value: 79.09430644097604
|
2558 |
+
- type: cos_sim_precision
|
2559 |
+
value: 75.45085977911366
|
2560 |
+
- type: cos_sim_recall
|
2561 |
+
value: 83.10748383122882
|
2562 |
+
- type: dot_accuracy
|
2563 |
+
value: 89.38370784336554
|
2564 |
+
- type: dot_ap
|
2565 |
+
value: 86.58840606004333
|
2566 |
+
- type: dot_f1
|
2567 |
+
value: 79.10179860068133
|
2568 |
+
- type: dot_precision
|
2569 |
+
value: 75.44546153308643
|
2570 |
+
- type: dot_recall
|
2571 |
+
value: 83.13058207576223
|
2572 |
+
- type: euclidean_accuracy
|
2573 |
+
value: 89.38564830985369
|
2574 |
+
- type: euclidean_ap
|
2575 |
+
value: 86.58820721061164
|
2576 |
+
- type: euclidean_f1
|
2577 |
+
value: 79.09070942235888
|
2578 |
+
- type: euclidean_precision
|
2579 |
+
value: 75.38729937194697
|
2580 |
+
- type: euclidean_recall
|
2581 |
+
value: 83.17677856482906
|
2582 |
+
- type: manhattan_accuracy
|
2583 |
+
value: 89.40699344122326
|
2584 |
+
- type: manhattan_ap
|
2585 |
+
value: 86.60631843011362
|
2586 |
+
- type: manhattan_f1
|
2587 |
+
value: 79.14949970570925
|
2588 |
+
- type: manhattan_precision
|
2589 |
+
value: 75.78191039729502
|
2590 |
+
- type: manhattan_recall
|
2591 |
+
value: 82.83030489682784
|
2592 |
+
- type: max_accuracy
|
2593 |
+
value: 89.40699344122326
|
2594 |
+
- type: max_ap
|
2595 |
+
value: 86.60631843011362
|
2596 |
+
- type: max_f1
|
2597 |
+
value: 79.14949970570925
|
2598 |
+
- task:
|
2599 |
+
type: STS
|
2600 |
+
dataset:
|
2601 |
+
name: MTEB AFQMC
|
2602 |
+
type: C-MTEB/AFQMC
|
2603 |
+
config: default
|
2604 |
+
split: validation
|
2605 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
2606 |
+
metrics:
|
2607 |
+
- type: cos_sim_pearson
|
2608 |
+
value: 65.58442135663871
|
2609 |
+
- type: cos_sim_spearman
|
2610 |
+
value: 72.2538631361313
|
2611 |
+
- type: euclidean_pearson
|
2612 |
+
value: 70.97255486607429
|
2613 |
+
- type: euclidean_spearman
|
2614 |
+
value: 72.25374250228647
|
2615 |
+
- type: manhattan_pearson
|
2616 |
+
value: 70.83250199989911
|
2617 |
+
- type: manhattan_spearman
|
2618 |
+
value: 72.14819496536272
|
2619 |
+
- task:
|
2620 |
+
type: STS
|
2621 |
+
dataset:
|
2622 |
+
name: MTEB ATEC
|
2623 |
+
type: C-MTEB/ATEC
|
2624 |
+
config: default
|
2625 |
+
split: test
|
2626 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
2627 |
+
metrics:
|
2628 |
+
- type: cos_sim_pearson
|
2629 |
+
value: 59.99478404929932
|
2630 |
+
- type: cos_sim_spearman
|
2631 |
+
value: 62.61836216999812
|
2632 |
+
- type: euclidean_pearson
|
2633 |
+
value: 66.86429811933593
|
2634 |
+
- type: euclidean_spearman
|
2635 |
+
value: 62.6183520374191
|
2636 |
+
- type: manhattan_pearson
|
2637 |
+
value: 66.8063778911633
|
2638 |
+
- type: manhattan_spearman
|
2639 |
+
value: 62.569607573241115
|
2640 |
+
- task:
|
2641 |
+
type: Classification
|
2642 |
+
dataset:
|
2643 |
+
name: MTEB AmazonReviewsClassification (zh)
|
2644 |
+
type: mteb/amazon_reviews_multi
|
2645 |
+
config: zh
|
2646 |
+
split: test
|
2647 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
2648 |
+
metrics:
|
2649 |
+
- type: accuracy
|
2650 |
+
value: 53.98400000000001
|
2651 |
+
- type: f1
|
2652 |
+
value: 51.21447361350723
|
2653 |
+
- task:
|
2654 |
+
type: STS
|
2655 |
+
dataset:
|
2656 |
+
name: MTEB BQ
|
2657 |
+
type: C-MTEB/BQ
|
2658 |
+
config: default
|
2659 |
+
split: test
|
2660 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
2661 |
+
metrics:
|
2662 |
+
- type: cos_sim_pearson
|
2663 |
+
value: 79.11941660686553
|
2664 |
+
- type: cos_sim_spearman
|
2665 |
+
value: 81.25029594540435
|
2666 |
+
- type: euclidean_pearson
|
2667 |
+
value: 82.06973504238826
|
2668 |
+
- type: euclidean_spearman
|
2669 |
+
value: 81.2501989488524
|
2670 |
+
- type: manhattan_pearson
|
2671 |
+
value: 82.10094630392753
|
2672 |
+
- type: manhattan_spearman
|
2673 |
+
value: 81.27987244392389
|
2674 |
+
- task:
|
2675 |
+
type: Clustering
|
2676 |
+
dataset:
|
2677 |
+
name: MTEB CLSClusteringP2P
|
2678 |
+
type: C-MTEB/CLSClusteringP2P
|
2679 |
+
config: default
|
2680 |
+
split: test
|
2681 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
2682 |
+
metrics:
|
2683 |
+
- type: v_measure
|
2684 |
+
value: 47.07270168705156
|
2685 |
+
- task:
|
2686 |
+
type: Clustering
|
2687 |
+
dataset:
|
2688 |
+
name: MTEB CLSClusteringS2S
|
2689 |
+
type: C-MTEB/CLSClusteringS2S
|
2690 |
+
config: default
|
2691 |
+
split: test
|
2692 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
2693 |
+
metrics:
|
2694 |
+
- type: v_measure
|
2695 |
+
value: 45.98511703185043
|
2696 |
+
- task:
|
2697 |
+
type: Reranking
|
2698 |
+
dataset:
|
2699 |
+
name: MTEB CMedQAv1
|
2700 |
+
type: C-MTEB/CMedQAv1-reranking
|
2701 |
+
config: default
|
2702 |
+
split: test
|
2703 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
2704 |
+
metrics:
|
2705 |
+
- type: map
|
2706 |
+
value: 88.19895157194931
|
2707 |
+
- type: mrr
|
2708 |
+
value: 90.21424603174603
|
2709 |
+
- task:
|
2710 |
+
type: Reranking
|
2711 |
+
dataset:
|
2712 |
+
name: MTEB CMedQAv2
|
2713 |
+
type: C-MTEB/CMedQAv2-reranking
|
2714 |
+
config: default
|
2715 |
+
split: test
|
2716 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
2717 |
+
metrics:
|
2718 |
+
- type: map
|
2719 |
+
value: 88.03317320980119
|
2720 |
+
- type: mrr
|
2721 |
+
value: 89.9461507936508
|
2722 |
+
- task:
|
2723 |
+
type: Retrieval
|
2724 |
+
dataset:
|
2725 |
+
name: MTEB CmedqaRetrieval
|
2726 |
+
type: C-MTEB/CmedqaRetrieval
|
2727 |
+
config: default
|
2728 |
+
split: dev
|
2729 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
2730 |
+
metrics:
|
2731 |
+
- type: map_at_1
|
2732 |
+
value: 29.037000000000003
|
2733 |
+
- type: map_at_10
|
2734 |
+
value: 42.001
|
2735 |
+
- type: map_at_100
|
2736 |
+
value: 43.773
|
2737 |
+
- type: map_at_1000
|
2738 |
+
value: 43.878
|
2739 |
+
- type: map_at_3
|
2740 |
+
value: 37.637
|
2741 |
+
- type: map_at_5
|
2742 |
+
value: 40.034
|
2743 |
+
- type: mrr_at_1
|
2744 |
+
value: 43.136
|
2745 |
+
- type: mrr_at_10
|
2746 |
+
value: 51.158
|
2747 |
+
- type: mrr_at_100
|
2748 |
+
value: 52.083
|
2749 |
+
- type: mrr_at_1000
|
2750 |
+
value: 52.12
|
2751 |
+
- type: mrr_at_3
|
2752 |
+
value: 48.733
|
2753 |
+
- type: mrr_at_5
|
2754 |
+
value: 50.025
|
2755 |
+
- type: ndcg_at_1
|
2756 |
+
value: 43.136
|
2757 |
+
- type: ndcg_at_10
|
2758 |
+
value: 48.685
|
2759 |
+
- type: ndcg_at_100
|
2760 |
+
value: 55.513
|
2761 |
+
- type: ndcg_at_1000
|
2762 |
+
value: 57.242000000000004
|
2763 |
+
- type: ndcg_at_3
|
2764 |
+
value: 43.329
|
2765 |
+
- type: ndcg_at_5
|
2766 |
+
value: 45.438
|
2767 |
+
- type: precision_at_1
|
2768 |
+
value: 43.136
|
2769 |
+
- type: precision_at_10
|
2770 |
+
value: 10.56
|
2771 |
+
- type: precision_at_100
|
2772 |
+
value: 1.6129999999999998
|
2773 |
+
- type: precision_at_1000
|
2774 |
+
value: 0.184
|
2775 |
+
- type: precision_at_3
|
2776 |
+
value: 24.064
|
2777 |
+
- type: precision_at_5
|
2778 |
+
value: 17.269000000000002
|
2779 |
+
- type: recall_at_1
|
2780 |
+
value: 29.037000000000003
|
2781 |
+
- type: recall_at_10
|
2782 |
+
value: 59.245000000000005
|
2783 |
+
- type: recall_at_100
|
2784 |
+
value: 87.355
|
2785 |
+
- type: recall_at_1000
|
2786 |
+
value: 98.74000000000001
|
2787 |
+
- type: recall_at_3
|
2788 |
+
value: 42.99
|
2789 |
+
- type: recall_at_5
|
2790 |
+
value: 49.681999999999995
|
2791 |
+
- task:
|
2792 |
+
type: PairClassification
|
2793 |
+
dataset:
|
2794 |
+
name: MTEB Cmnli
|
2795 |
+
type: C-MTEB/CMNLI
|
2796 |
+
config: default
|
2797 |
+
split: validation
|
2798 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
2799 |
+
metrics:
|
2800 |
+
- type: cos_sim_accuracy
|
2801 |
+
value: 82.68190018039687
|
2802 |
+
- type: cos_sim_ap
|
2803 |
+
value: 90.18017125327886
|
2804 |
+
- type: cos_sim_f1
|
2805 |
+
value: 83.64080906868193
|
2806 |
+
- type: cos_sim_precision
|
2807 |
+
value: 79.7076890489303
|
2808 |
+
- type: cos_sim_recall
|
2809 |
+
value: 87.98223053542202
|
2810 |
+
- type: dot_accuracy
|
2811 |
+
value: 82.68190018039687
|
2812 |
+
- type: dot_ap
|
2813 |
+
value: 90.18782350103646
|
2814 |
+
- type: dot_f1
|
2815 |
+
value: 83.64242087729039
|
2816 |
+
- type: dot_precision
|
2817 |
+
value: 79.65313028764805
|
2818 |
+
- type: dot_recall
|
2819 |
+
value: 88.05237315875614
|
2820 |
+
- type: euclidean_accuracy
|
2821 |
+
value: 82.68190018039687
|
2822 |
+
- type: euclidean_ap
|
2823 |
+
value: 90.1801957900632
|
2824 |
+
- type: euclidean_f1
|
2825 |
+
value: 83.63636363636364
|
2826 |
+
- type: euclidean_precision
|
2827 |
+
value: 79.52772506852203
|
2828 |
+
- type: euclidean_recall
|
2829 |
+
value: 88.19265840542437
|
2830 |
+
- type: manhattan_accuracy
|
2831 |
+
value: 82.14070956103427
|
2832 |
+
- type: manhattan_ap
|
2833 |
+
value: 89.96178420101427
|
2834 |
+
- type: manhattan_f1
|
2835 |
+
value: 83.21087838578791
|
2836 |
+
- type: manhattan_precision
|
2837 |
+
value: 78.35605121850475
|
2838 |
+
- type: manhattan_recall
|
2839 |
+
value: 88.70703764320785
|
2840 |
+
- type: max_accuracy
|
2841 |
+
value: 82.68190018039687
|
2842 |
+
- type: max_ap
|
2843 |
+
value: 90.18782350103646
|
2844 |
+
- type: max_f1
|
2845 |
+
value: 83.64242087729039
|
2846 |
+
- task:
|
2847 |
+
type: Retrieval
|
2848 |
+
dataset:
|
2849 |
+
name: MTEB CovidRetrieval
|
2850 |
+
type: C-MTEB/CovidRetrieval
|
2851 |
+
config: default
|
2852 |
+
split: dev
|
2853 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
2854 |
+
metrics:
|
2855 |
+
- type: map_at_1
|
2856 |
+
value: 72.234
|
2857 |
+
- type: map_at_10
|
2858 |
+
value: 80.10000000000001
|
2859 |
+
- type: map_at_100
|
2860 |
+
value: 80.36
|
2861 |
+
- type: map_at_1000
|
2862 |
+
value: 80.363
|
2863 |
+
- type: map_at_3
|
2864 |
+
value: 78.315
|
2865 |
+
- type: map_at_5
|
2866 |
+
value: 79.607
|
2867 |
+
- type: mrr_at_1
|
2868 |
+
value: 72.392
|
2869 |
+
- type: mrr_at_10
|
2870 |
+
value: 80.117
|
2871 |
+
- type: mrr_at_100
|
2872 |
+
value: 80.36999999999999
|
2873 |
+
- type: mrr_at_1000
|
2874 |
+
value: 80.373
|
2875 |
+
- type: mrr_at_3
|
2876 |
+
value: 78.469
|
2877 |
+
- type: mrr_at_5
|
2878 |
+
value: 79.633
|
2879 |
+
- type: ndcg_at_1
|
2880 |
+
value: 72.392
|
2881 |
+
- type: ndcg_at_10
|
2882 |
+
value: 83.651
|
2883 |
+
- type: ndcg_at_100
|
2884 |
+
value: 84.749
|
2885 |
+
- type: ndcg_at_1000
|
2886 |
+
value: 84.83000000000001
|
2887 |
+
- type: ndcg_at_3
|
2888 |
+
value: 80.253
|
2889 |
+
- type: ndcg_at_5
|
2890 |
+
value: 82.485
|
2891 |
+
- type: precision_at_1
|
2892 |
+
value: 72.392
|
2893 |
+
- type: precision_at_10
|
2894 |
+
value: 9.557
|
2895 |
+
- type: precision_at_100
|
2896 |
+
value: 1.004
|
2897 |
+
- type: precision_at_1000
|
2898 |
+
value: 0.101
|
2899 |
+
- type: precision_at_3
|
2900 |
+
value: 28.732000000000003
|
2901 |
+
- type: precision_at_5
|
2902 |
+
value: 18.377
|
2903 |
+
- type: recall_at_1
|
2904 |
+
value: 72.234
|
2905 |
+
- type: recall_at_10
|
2906 |
+
value: 94.573
|
2907 |
+
- type: recall_at_100
|
2908 |
+
value: 99.368
|
2909 |
+
- type: recall_at_1000
|
2910 |
+
value: 100.0
|
2911 |
+
- type: recall_at_3
|
2912 |
+
value: 85.669
|
2913 |
+
- type: recall_at_5
|
2914 |
+
value: 91.01700000000001
|
2915 |
+
- task:
|
2916 |
+
type: Retrieval
|
2917 |
+
dataset:
|
2918 |
+
name: MTEB DuRetrieval
|
2919 |
+
type: C-MTEB/DuRetrieval
|
2920 |
+
config: default
|
2921 |
+
split: dev
|
2922 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
2923 |
+
metrics:
|
2924 |
+
- type: map_at_1
|
2925 |
+
value: 26.173999999999996
|
2926 |
+
- type: map_at_10
|
2927 |
+
value: 80.04
|
2928 |
+
- type: map_at_100
|
2929 |
+
value: 82.94500000000001
|
2930 |
+
- type: map_at_1000
|
2931 |
+
value: 82.98100000000001
|
2932 |
+
- type: map_at_3
|
2933 |
+
value: 55.562999999999995
|
2934 |
+
- type: map_at_5
|
2935 |
+
value: 69.89800000000001
|
2936 |
+
- type: mrr_at_1
|
2937 |
+
value: 89.5
|
2938 |
+
- type: mrr_at_10
|
2939 |
+
value: 92.996
|
2940 |
+
- type: mrr_at_100
|
2941 |
+
value: 93.06400000000001
|
2942 |
+
- type: mrr_at_1000
|
2943 |
+
value: 93.065
|
2944 |
+
- type: mrr_at_3
|
2945 |
+
value: 92.658
|
2946 |
+
- type: mrr_at_5
|
2947 |
+
value: 92.84599999999999
|
2948 |
+
- type: ndcg_at_1
|
2949 |
+
value: 89.5
|
2950 |
+
- type: ndcg_at_10
|
2951 |
+
value: 87.443
|
2952 |
+
- type: ndcg_at_100
|
2953 |
+
value: 90.253
|
2954 |
+
- type: ndcg_at_1000
|
2955 |
+
value: 90.549
|
2956 |
+
- type: ndcg_at_3
|
2957 |
+
value: 85.874
|
2958 |
+
- type: ndcg_at_5
|
2959 |
+
value: 84.842
|
2960 |
+
- type: precision_at_1
|
2961 |
+
value: 89.5
|
2962 |
+
- type: precision_at_10
|
2963 |
+
value: 41.805
|
2964 |
+
- type: precision_at_100
|
2965 |
+
value: 4.827
|
2966 |
+
- type: precision_at_1000
|
2967 |
+
value: 0.49
|
2968 |
+
- type: precision_at_3
|
2969 |
+
value: 76.85
|
2970 |
+
- type: precision_at_5
|
2971 |
+
value: 64.8
|
2972 |
+
- type: recall_at_1
|
2973 |
+
value: 26.173999999999996
|
2974 |
+
- type: recall_at_10
|
2975 |
+
value: 89.101
|
2976 |
+
- type: recall_at_100
|
2977 |
+
value: 98.08099999999999
|
2978 |
+
- type: recall_at_1000
|
2979 |
+
value: 99.529
|
2980 |
+
- type: recall_at_3
|
2981 |
+
value: 57.902
|
2982 |
+
- type: recall_at_5
|
2983 |
+
value: 74.602
|
2984 |
+
- task:
|
2985 |
+
type: Retrieval
|
2986 |
+
dataset:
|
2987 |
+
name: MTEB EcomRetrieval
|
2988 |
+
type: C-MTEB/EcomRetrieval
|
2989 |
+
config: default
|
2990 |
+
split: dev
|
2991 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
2992 |
+
metrics:
|
2993 |
+
- type: map_at_1
|
2994 |
+
value: 56.10000000000001
|
2995 |
+
- type: map_at_10
|
2996 |
+
value: 66.15299999999999
|
2997 |
+
- type: map_at_100
|
2998 |
+
value: 66.625
|
2999 |
+
- type: map_at_1000
|
3000 |
+
value: 66.636
|
3001 |
+
- type: map_at_3
|
3002 |
+
value: 63.632999999999996
|
3003 |
+
- type: map_at_5
|
3004 |
+
value: 65.293
|
3005 |
+
- type: mrr_at_1
|
3006 |
+
value: 56.10000000000001
|
3007 |
+
- type: mrr_at_10
|
3008 |
+
value: 66.15299999999999
|
3009 |
+
- type: mrr_at_100
|
3010 |
+
value: 66.625
|
3011 |
+
- type: mrr_at_1000
|
3012 |
+
value: 66.636
|
3013 |
+
- type: mrr_at_3
|
3014 |
+
value: 63.632999999999996
|
3015 |
+
- type: mrr_at_5
|
3016 |
+
value: 65.293
|
3017 |
+
- type: ndcg_at_1
|
3018 |
+
value: 56.10000000000001
|
3019 |
+
- type: ndcg_at_10
|
3020 |
+
value: 71.146
|
3021 |
+
- type: ndcg_at_100
|
3022 |
+
value: 73.27799999999999
|
3023 |
+
- type: ndcg_at_1000
|
3024 |
+
value: 73.529
|
3025 |
+
- type: ndcg_at_3
|
3026 |
+
value: 66.09
|
3027 |
+
- type: ndcg_at_5
|
3028 |
+
value: 69.08999999999999
|
3029 |
+
- type: precision_at_1
|
3030 |
+
value: 56.10000000000001
|
3031 |
+
- type: precision_at_10
|
3032 |
+
value: 8.68
|
3033 |
+
- type: precision_at_100
|
3034 |
+
value: 0.964
|
3035 |
+
- type: precision_at_1000
|
3036 |
+
value: 0.098
|
3037 |
+
- type: precision_at_3
|
3038 |
+
value: 24.4
|
3039 |
+
- type: precision_at_5
|
3040 |
+
value: 16.1
|
3041 |
+
- type: recall_at_1
|
3042 |
+
value: 56.10000000000001
|
3043 |
+
- type: recall_at_10
|
3044 |
+
value: 86.8
|
3045 |
+
- type: recall_at_100
|
3046 |
+
value: 96.39999999999999
|
3047 |
+
- type: recall_at_1000
|
3048 |
+
value: 98.3
|
3049 |
+
- type: recall_at_3
|
3050 |
+
value: 73.2
|
3051 |
+
- type: recall_at_5
|
3052 |
+
value: 80.5
|
3053 |
+
- task:
|
3054 |
+
type: Classification
|
3055 |
+
dataset:
|
3056 |
+
name: MTEB IFlyTek
|
3057 |
+
type: C-MTEB/IFlyTek-classification
|
3058 |
+
config: default
|
3059 |
+
split: validation
|
3060 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
3061 |
+
metrics:
|
3062 |
+
- type: accuracy
|
3063 |
+
value: 54.52096960369373
|
3064 |
+
- type: f1
|
3065 |
+
value: 40.930845295808695
|
3066 |
+
- task:
|
3067 |
+
type: Classification
|
3068 |
+
dataset:
|
3069 |
+
name: MTEB JDReview
|
3070 |
+
type: C-MTEB/JDReview-classification
|
3071 |
+
config: default
|
3072 |
+
split: test
|
3073 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
3074 |
+
metrics:
|
3075 |
+
- type: accuracy
|
3076 |
+
value: 86.51031894934334
|
3077 |
+
- type: ap
|
3078 |
+
value: 55.9516014323483
|
3079 |
+
- type: f1
|
3080 |
+
value: 81.54813679326381
|
3081 |
+
- task:
|
3082 |
+
type: STS
|
3083 |
+
dataset:
|
3084 |
+
name: MTEB LCQMC
|
3085 |
+
type: C-MTEB/LCQMC
|
3086 |
+
config: default
|
3087 |
+
split: test
|
3088 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
3089 |
+
metrics:
|
3090 |
+
- type: cos_sim_pearson
|
3091 |
+
value: 69.67437838574276
|
3092 |
+
- type: cos_sim_spearman
|
3093 |
+
value: 73.81314174653045
|
3094 |
+
- type: euclidean_pearson
|
3095 |
+
value: 72.63430276680275
|
3096 |
+
- type: euclidean_spearman
|
3097 |
+
value: 73.81358736777001
|
3098 |
+
- type: manhattan_pearson
|
3099 |
+
value: 72.58743833842829
|
3100 |
+
- type: manhattan_spearman
|
3101 |
+
value: 73.7590419009179
|
3102 |
+
- task:
|
3103 |
+
type: Reranking
|
3104 |
+
dataset:
|
3105 |
+
name: MTEB MMarcoReranking
|
3106 |
+
type: C-MTEB/Mmarco-reranking
|
3107 |
+
config: default
|
3108 |
+
split: dev
|
3109 |
+
revision: None
|
3110 |
+
metrics:
|
3111 |
+
- type: map
|
3112 |
+
value: 31.648613483640254
|
3113 |
+
- type: mrr
|
3114 |
+
value: 30.37420634920635
|
3115 |
+
- task:
|
3116 |
+
type: Retrieval
|
3117 |
+
dataset:
|
3118 |
+
name: MTEB MMarcoRetrieval
|
3119 |
+
type: C-MTEB/MMarcoRetrieval
|
3120 |
+
config: default
|
3121 |
+
split: dev
|
3122 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
3123 |
+
metrics:
|
3124 |
+
- type: map_at_1
|
3125 |
+
value: 73.28099999999999
|
3126 |
+
- type: map_at_10
|
3127 |
+
value: 81.977
|
3128 |
+
- type: map_at_100
|
3129 |
+
value: 82.222
|
3130 |
+
- type: map_at_1000
|
3131 |
+
value: 82.22699999999999
|
3132 |
+
- type: map_at_3
|
3133 |
+
value: 80.441
|
3134 |
+
- type: map_at_5
|
3135 |
+
value: 81.46600000000001
|
3136 |
+
- type: mrr_at_1
|
3137 |
+
value: 75.673
|
3138 |
+
- type: mrr_at_10
|
3139 |
+
value: 82.41000000000001
|
3140 |
+
- type: mrr_at_100
|
3141 |
+
value: 82.616
|
3142 |
+
- type: mrr_at_1000
|
3143 |
+
value: 82.621
|
3144 |
+
- type: mrr_at_3
|
3145 |
+
value: 81.094
|
3146 |
+
- type: mrr_at_5
|
3147 |
+
value: 81.962
|
3148 |
+
- type: ndcg_at_1
|
3149 |
+
value: 75.673
|
3150 |
+
- type: ndcg_at_10
|
3151 |
+
value: 85.15599999999999
|
3152 |
+
- type: ndcg_at_100
|
3153 |
+
value: 86.151
|
3154 |
+
- type: ndcg_at_1000
|
3155 |
+
value: 86.26899999999999
|
3156 |
+
- type: ndcg_at_3
|
3157 |
+
value: 82.304
|
3158 |
+
- type: ndcg_at_5
|
3159 |
+
value: 84.009
|
3160 |
+
- type: precision_at_1
|
3161 |
+
value: 75.673
|
3162 |
+
- type: precision_at_10
|
3163 |
+
value: 10.042
|
3164 |
+
- type: precision_at_100
|
3165 |
+
value: 1.052
|
3166 |
+
- type: precision_at_1000
|
3167 |
+
value: 0.106
|
3168 |
+
- type: precision_at_3
|
3169 |
+
value: 30.673000000000002
|
3170 |
+
- type: precision_at_5
|
3171 |
+
value: 19.326999999999998
|
3172 |
+
- type: recall_at_1
|
3173 |
+
value: 73.28099999999999
|
3174 |
+
- type: recall_at_10
|
3175 |
+
value: 94.446
|
3176 |
+
- type: recall_at_100
|
3177 |
+
value: 98.737
|
3178 |
+
- type: recall_at_1000
|
3179 |
+
value: 99.649
|
3180 |
+
- type: recall_at_3
|
3181 |
+
value: 86.984
|
3182 |
+
- type: recall_at_5
|
3183 |
+
value: 91.024
|
3184 |
+
- task:
|
3185 |
+
type: Classification
|
3186 |
+
dataset:
|
3187 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
3188 |
+
type: mteb/amazon_massive_intent
|
3189 |
+
config: zh-CN
|
3190 |
+
split: test
|
3191 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
3192 |
+
metrics:
|
3193 |
+
- type: accuracy
|
3194 |
+
value: 81.08607935440484
|
3195 |
+
- type: f1
|
3196 |
+
value: 78.24879986066307
|
3197 |
+
- task:
|
3198 |
+
type: Classification
|
3199 |
+
dataset:
|
3200 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
3201 |
+
type: mteb/amazon_massive_scenario
|
3202 |
+
config: zh-CN
|
3203 |
+
split: test
|
3204 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
3205 |
+
metrics:
|
3206 |
+
- type: accuracy
|
3207 |
+
value: 86.05917955615332
|
3208 |
+
- type: f1
|
3209 |
+
value: 85.05279279434997
|
3210 |
+
- task:
|
3211 |
+
type: Retrieval
|
3212 |
+
dataset:
|
3213 |
+
name: MTEB MedicalRetrieval
|
3214 |
+
type: C-MTEB/MedicalRetrieval
|
3215 |
+
config: default
|
3216 |
+
split: dev
|
3217 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
3218 |
+
metrics:
|
3219 |
+
- type: map_at_1
|
3220 |
+
value: 56.2
|
3221 |
+
- type: map_at_10
|
3222 |
+
value: 62.57899999999999
|
3223 |
+
- type: map_at_100
|
3224 |
+
value: 63.154999999999994
|
3225 |
+
- type: map_at_1000
|
3226 |
+
value: 63.193
|
3227 |
+
- type: map_at_3
|
3228 |
+
value: 61.217
|
3229 |
+
- type: map_at_5
|
3230 |
+
value: 62.012
|
3231 |
+
- type: mrr_at_1
|
3232 |
+
value: 56.3
|
3233 |
+
- type: mrr_at_10
|
3234 |
+
value: 62.629000000000005
|
3235 |
+
- type: mrr_at_100
|
3236 |
+
value: 63.205999999999996
|
3237 |
+
- type: mrr_at_1000
|
3238 |
+
value: 63.244
|
3239 |
+
- type: mrr_at_3
|
3240 |
+
value: 61.267
|
3241 |
+
- type: mrr_at_5
|
3242 |
+
value: 62.062
|
3243 |
+
- type: ndcg_at_1
|
3244 |
+
value: 56.2
|
3245 |
+
- type: ndcg_at_10
|
3246 |
+
value: 65.592
|
3247 |
+
- type: ndcg_at_100
|
3248 |
+
value: 68.657
|
3249 |
+
- type: ndcg_at_1000
|
3250 |
+
value: 69.671
|
3251 |
+
- type: ndcg_at_3
|
3252 |
+
value: 62.808
|
3253 |
+
- type: ndcg_at_5
|
3254 |
+
value: 64.24499999999999
|
3255 |
+
- type: precision_at_1
|
3256 |
+
value: 56.2
|
3257 |
+
- type: precision_at_10
|
3258 |
+
value: 7.5
|
3259 |
+
- type: precision_at_100
|
3260 |
+
value: 0.899
|
3261 |
+
- type: precision_at_1000
|
3262 |
+
value: 0.098
|
3263 |
+
- type: precision_at_3
|
3264 |
+
value: 22.467000000000002
|
3265 |
+
- type: precision_at_5
|
3266 |
+
value: 14.180000000000001
|
3267 |
+
- type: recall_at_1
|
3268 |
+
value: 56.2
|
3269 |
+
- type: recall_at_10
|
3270 |
+
value: 75.0
|
3271 |
+
- type: recall_at_100
|
3272 |
+
value: 89.9
|
3273 |
+
- type: recall_at_1000
|
3274 |
+
value: 97.89999999999999
|
3275 |
+
- type: recall_at_3
|
3276 |
+
value: 67.4
|
3277 |
+
- type: recall_at_5
|
3278 |
+
value: 70.89999999999999
|
3279 |
+
- task:
|
3280 |
+
type: Classification
|
3281 |
+
dataset:
|
3282 |
+
name: MTEB MultilingualSentiment
|
3283 |
+
type: C-MTEB/MultilingualSentiment-classification
|
3284 |
+
config: default
|
3285 |
+
split: validation
|
3286 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
3287 |
+
metrics:
|
3288 |
+
- type: accuracy
|
3289 |
+
value: 76.87666666666667
|
3290 |
+
- type: f1
|
3291 |
+
value: 76.7317686219665
|
3292 |
+
- task:
|
3293 |
+
type: PairClassification
|
3294 |
+
dataset:
|
3295 |
+
name: MTEB Ocnli
|
3296 |
+
type: C-MTEB/OCNLI
|
3297 |
+
config: default
|
3298 |
+
split: validation
|
3299 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
3300 |
+
metrics:
|
3301 |
+
- type: cos_sim_accuracy
|
3302 |
+
value: 79.64266377910124
|
3303 |
+
- type: cos_sim_ap
|
3304 |
+
value: 84.78274442344829
|
3305 |
+
- type: cos_sim_f1
|
3306 |
+
value: 81.16947472745292
|
3307 |
+
- type: cos_sim_precision
|
3308 |
+
value: 76.47058823529412
|
3309 |
+
- type: cos_sim_recall
|
3310 |
+
value: 86.48363252375924
|
3311 |
+
- type: dot_accuracy
|
3312 |
+
value: 79.64266377910124
|
3313 |
+
- type: dot_ap
|
3314 |
+
value: 84.7851404063692
|
3315 |
+
- type: dot_f1
|
3316 |
+
value: 81.16947472745292
|
3317 |
+
- type: dot_precision
|
3318 |
+
value: 76.47058823529412
|
3319 |
+
- type: dot_recall
|
3320 |
+
value: 86.48363252375924
|
3321 |
+
- type: euclidean_accuracy
|
3322 |
+
value: 79.64266377910124
|
3323 |
+
- type: euclidean_ap
|
3324 |
+
value: 84.78068373762378
|
3325 |
+
- type: euclidean_f1
|
3326 |
+
value: 81.14794656110837
|
3327 |
+
- type: euclidean_precision
|
3328 |
+
value: 76.35009310986965
|
3329 |
+
- type: euclidean_recall
|
3330 |
+
value: 86.58922914466737
|
3331 |
+
- type: manhattan_accuracy
|
3332 |
+
value: 79.48023822414727
|
3333 |
+
- type: manhattan_ap
|
3334 |
+
value: 84.72928897427576
|
3335 |
+
- type: manhattan_f1
|
3336 |
+
value: 81.32084770823064
|
3337 |
+
- type: manhattan_precision
|
3338 |
+
value: 76.24768946395564
|
3339 |
+
- type: manhattan_recall
|
3340 |
+
value: 87.11721224920802
|
3341 |
+
- type: max_accuracy
|
3342 |
+
value: 79.64266377910124
|
3343 |
+
- type: max_ap
|
3344 |
+
value: 84.7851404063692
|
3345 |
+
- type: max_f1
|
3346 |
+
value: 81.32084770823064
|
3347 |
+
- task:
|
3348 |
+
type: Classification
|
3349 |
+
dataset:
|
3350 |
+
name: MTEB OnlineShopping
|
3351 |
+
type: C-MTEB/OnlineShopping-classification
|
3352 |
+
config: default
|
3353 |
+
split: test
|
3354 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
3355 |
+
metrics:
|
3356 |
+
- type: accuracy
|
3357 |
+
value: 94.3
|
3358 |
+
- type: ap
|
3359 |
+
value: 92.8664032274438
|
3360 |
+
- type: f1
|
3361 |
+
value: 94.29311102997727
|
3362 |
+
- task:
|
3363 |
+
type: STS
|
3364 |
+
dataset:
|
3365 |
+
name: MTEB PAWSX
|
3366 |
+
type: C-MTEB/PAWSX
|
3367 |
+
config: default
|
3368 |
+
split: test
|
3369 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
3370 |
+
metrics:
|
3371 |
+
- type: cos_sim_pearson
|
3372 |
+
value: 48.51392279882909
|
3373 |
+
- type: cos_sim_spearman
|
3374 |
+
value: 54.06338895994974
|
3375 |
+
- type: euclidean_pearson
|
3376 |
+
value: 52.58480559573412
|
3377 |
+
- type: euclidean_spearman
|
3378 |
+
value: 54.06417276612201
|
3379 |
+
- type: manhattan_pearson
|
3380 |
+
value: 52.69525121721343
|
3381 |
+
- type: manhattan_spearman
|
3382 |
+
value: 54.048147455389675
|
3383 |
+
- task:
|
3384 |
+
type: STS
|
3385 |
+
dataset:
|
3386 |
+
name: MTEB QBQTC
|
3387 |
+
type: C-MTEB/QBQTC
|
3388 |
+
config: default
|
3389 |
+
split: test
|
3390 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
3391 |
+
metrics:
|
3392 |
+
- type: cos_sim_pearson
|
3393 |
+
value: 29.728387290757325
|
3394 |
+
- type: cos_sim_spearman
|
3395 |
+
value: 31.366121633635284
|
3396 |
+
- type: euclidean_pearson
|
3397 |
+
value: 29.14588368552961
|
3398 |
+
- type: euclidean_spearman
|
3399 |
+
value: 31.36764411112844
|
3400 |
+
- type: manhattan_pearson
|
3401 |
+
value: 29.63517350523121
|
3402 |
+
- type: manhattan_spearman
|
3403 |
+
value: 31.94157020583762
|
3404 |
+
- task:
|
3405 |
+
type: STS
|
3406 |
+
dataset:
|
3407 |
+
name: MTEB STS22 (zh)
|
3408 |
+
type: mteb/sts22-crosslingual-sts
|
3409 |
+
config: zh
|
3410 |
+
split: test
|
3411 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
3412 |
+
metrics:
|
3413 |
+
- type: cos_sim_pearson
|
3414 |
+
value: 63.64868296271406
|
3415 |
+
- type: cos_sim_spearman
|
3416 |
+
value: 66.12800618164744
|
3417 |
+
- type: euclidean_pearson
|
3418 |
+
value: 63.21405767340238
|
3419 |
+
- type: euclidean_spearman
|
3420 |
+
value: 66.12786567790748
|
3421 |
+
- type: manhattan_pearson
|
3422 |
+
value: 64.04300276525848
|
3423 |
+
- type: manhattan_spearman
|
3424 |
+
value: 66.5066857145652
|
3425 |
+
- task:
|
3426 |
+
type: STS
|
3427 |
+
dataset:
|
3428 |
+
name: MTEB STSB
|
3429 |
+
type: C-MTEB/STSB
|
3430 |
+
config: default
|
3431 |
+
split: test
|
3432 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
3433 |
+
metrics:
|
3434 |
+
- type: cos_sim_pearson
|
3435 |
+
value: 81.2302623912794
|
3436 |
+
- type: cos_sim_spearman
|
3437 |
+
value: 81.16833673266562
|
3438 |
+
- type: euclidean_pearson
|
3439 |
+
value: 79.47647843876024
|
3440 |
+
- type: euclidean_spearman
|
3441 |
+
value: 81.16944349524972
|
3442 |
+
- type: manhattan_pearson
|
3443 |
+
value: 79.84947238492208
|
3444 |
+
- type: manhattan_spearman
|
3445 |
+
value: 81.64626599410026
|
3446 |
+
- task:
|
3447 |
+
type: Reranking
|
3448 |
+
dataset:
|
3449 |
+
name: MTEB T2Reranking
|
3450 |
+
type: C-MTEB/T2Reranking
|
3451 |
+
config: default
|
3452 |
+
split: dev
|
3453 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
3454 |
+
metrics:
|
3455 |
+
- type: map
|
3456 |
+
value: 67.80129586475687
|
3457 |
+
- type: mrr
|
3458 |
+
value: 77.77402311635554
|
3459 |
+
- task:
|
3460 |
+
type: Retrieval
|
3461 |
+
dataset:
|
3462 |
+
name: MTEB T2Retrieval
|
3463 |
+
type: C-MTEB/T2Retrieval
|
3464 |
+
config: default
|
3465 |
+
split: dev
|
3466 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
3467 |
+
metrics:
|
3468 |
+
- type: map_at_1
|
3469 |
+
value: 28.666999999999998
|
3470 |
+
- type: map_at_10
|
3471 |
+
value: 81.063
|
3472 |
+
- type: map_at_100
|
3473 |
+
value: 84.504
|
3474 |
+
- type: map_at_1000
|
3475 |
+
value: 84.552
|
3476 |
+
- type: map_at_3
|
3477 |
+
value: 56.897
|
3478 |
+
- type: map_at_5
|
3479 |
+
value: 70.073
|
3480 |
+
- type: mrr_at_1
|
3481 |
+
value: 92.087
|
3482 |
+
- type: mrr_at_10
|
3483 |
+
value: 94.132
|
3484 |
+
- type: mrr_at_100
|
3485 |
+
value: 94.19800000000001
|
3486 |
+
- type: mrr_at_1000
|
3487 |
+
value: 94.19999999999999
|
3488 |
+
- type: mrr_at_3
|
3489 |
+
value: 93.78999999999999
|
3490 |
+
- type: mrr_at_5
|
3491 |
+
value: 94.002
|
3492 |
+
- type: ndcg_at_1
|
3493 |
+
value: 92.087
|
3494 |
+
- type: ndcg_at_10
|
3495 |
+
value: 87.734
|
3496 |
+
- type: ndcg_at_100
|
3497 |
+
value: 90.736
|
3498 |
+
- type: ndcg_at_1000
|
3499 |
+
value: 91.184
|
3500 |
+
- type: ndcg_at_3
|
3501 |
+
value: 88.78
|
3502 |
+
- type: ndcg_at_5
|
3503 |
+
value: 87.676
|
3504 |
+
- type: precision_at_1
|
3505 |
+
value: 92.087
|
3506 |
+
- type: precision_at_10
|
3507 |
+
value: 43.46
|
3508 |
+
- type: precision_at_100
|
3509 |
+
value: 5.07
|
3510 |
+
- type: precision_at_1000
|
3511 |
+
value: 0.518
|
3512 |
+
- type: precision_at_3
|
3513 |
+
value: 77.49000000000001
|
3514 |
+
- type: precision_at_5
|
3515 |
+
value: 65.194
|
3516 |
+
- type: recall_at_1
|
3517 |
+
value: 28.666999999999998
|
3518 |
+
- type: recall_at_10
|
3519 |
+
value: 86.632
|
3520 |
+
- type: recall_at_100
|
3521 |
+
value: 96.646
|
3522 |
+
- type: recall_at_1000
|
3523 |
+
value: 98.917
|
3524 |
+
- type: recall_at_3
|
3525 |
+
value: 58.333999999999996
|
3526 |
+
- type: recall_at_5
|
3527 |
+
value: 72.974
|
3528 |
+
- task:
|
3529 |
+
type: Classification
|
3530 |
+
dataset:
|
3531 |
+
name: MTEB TNews
|
3532 |
+
type: C-MTEB/TNews-classification
|
3533 |
+
config: default
|
3534 |
+
split: validation
|
3535 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
3536 |
+
metrics:
|
3537 |
+
- type: accuracy
|
3538 |
+
value: 52.971999999999994
|
3539 |
+
- type: f1
|
3540 |
+
value: 50.2898280984929
|
3541 |
+
- task:
|
3542 |
+
type: Clustering
|
3543 |
+
dataset:
|
3544 |
+
name: MTEB ThuNewsClusteringP2P
|
3545 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
3546 |
+
config: default
|
3547 |
+
split: test
|
3548 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
3549 |
+
metrics:
|
3550 |
+
- type: v_measure
|
3551 |
+
value: 86.0797948663824
|
3552 |
+
- task:
|
3553 |
+
type: Clustering
|
3554 |
+
dataset:
|
3555 |
+
name: MTEB ThuNewsClusteringS2S
|
3556 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
3557 |
+
config: default
|
3558 |
+
split: test
|
3559 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
3560 |
+
metrics:
|
3561 |
+
- type: v_measure
|
3562 |
+
value: 85.10759092255017
|
3563 |
+
- task:
|
3564 |
+
type: Retrieval
|
3565 |
+
dataset:
|
3566 |
+
name: MTEB VideoRetrieval
|
3567 |
+
type: C-MTEB/VideoRetrieval
|
3568 |
+
config: default
|
3569 |
+
split: dev
|
3570 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
3571 |
+
metrics:
|
3572 |
+
- type: map_at_1
|
3573 |
+
value: 65.60000000000001
|
3574 |
+
- type: map_at_10
|
3575 |
+
value: 74.773
|
3576 |
+
- type: map_at_100
|
3577 |
+
value: 75.128
|
3578 |
+
- type: map_at_1000
|
3579 |
+
value: 75.136
|
3580 |
+
- type: map_at_3
|
3581 |
+
value: 73.05
|
3582 |
+
- type: map_at_5
|
3583 |
+
value: 74.13499999999999
|
3584 |
+
- type: mrr_at_1
|
3585 |
+
value: 65.60000000000001
|
3586 |
+
- type: mrr_at_10
|
3587 |
+
value: 74.773
|
3588 |
+
- type: mrr_at_100
|
3589 |
+
value: 75.128
|
3590 |
+
- type: mrr_at_1000
|
3591 |
+
value: 75.136
|
3592 |
+
- type: mrr_at_3
|
3593 |
+
value: 73.05
|
3594 |
+
- type: mrr_at_5
|
3595 |
+
value: 74.13499999999999
|
3596 |
+
- type: ndcg_at_1
|
3597 |
+
value: 65.60000000000001
|
3598 |
+
- type: ndcg_at_10
|
3599 |
+
value: 78.84299999999999
|
3600 |
+
- type: ndcg_at_100
|
3601 |
+
value: 80.40899999999999
|
3602 |
+
- type: ndcg_at_1000
|
3603 |
+
value: 80.57
|
3604 |
+
- type: ndcg_at_3
|
3605 |
+
value: 75.40599999999999
|
3606 |
+
- type: ndcg_at_5
|
3607 |
+
value: 77.351
|
3608 |
+
- type: precision_at_1
|
3609 |
+
value: 65.60000000000001
|
3610 |
+
- type: precision_at_10
|
3611 |
+
value: 9.139999999999999
|
3612 |
+
- type: precision_at_100
|
3613 |
+
value: 0.984
|
3614 |
+
- type: precision_at_1000
|
3615 |
+
value: 0.1
|
3616 |
+
- type: precision_at_3
|
3617 |
+
value: 27.400000000000002
|
3618 |
+
- type: precision_at_5
|
3619 |
+
value: 17.380000000000003
|
3620 |
+
- type: recall_at_1
|
3621 |
+
value: 65.60000000000001
|
3622 |
+
- type: recall_at_10
|
3623 |
+
value: 91.4
|
3624 |
+
- type: recall_at_100
|
3625 |
+
value: 98.4
|
3626 |
+
- type: recall_at_1000
|
3627 |
+
value: 99.6
|
3628 |
+
- type: recall_at_3
|
3629 |
+
value: 82.19999999999999
|
3630 |
+
- type: recall_at_5
|
3631 |
+
value: 86.9
|
3632 |
+
- task:
|
3633 |
+
type: Classification
|
3634 |
+
dataset:
|
3635 |
+
name: MTEB Waimai
|
3636 |
+
type: C-MTEB/waimai-classification
|
3637 |
+
config: default
|
3638 |
+
split: test
|
3639 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
3640 |
+
metrics:
|
3641 |
+
- type: accuracy
|
3642 |
+
value: 89.47
|
3643 |
+
- type: ap
|
3644 |
+
value: 75.59561751845389
|
3645 |
+
- type: f1
|
3646 |
+
value: 87.95207751382563
|
3647 |
+
---
|
3648 |
+
|
3649 |
+
# fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF
|
3650 |
+
This model was converted to GGUF format from [`Alibaba-NLP/gte-Qwen2-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
3651 |
+
Refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) for more details on the model.
|
3652 |
+
|
3653 |
+
## Use with llama.cpp
|
3654 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
3655 |
+
|
3656 |
+
```bash
|
3657 |
+
brew install llama.cpp
|
3658 |
+
|
3659 |
+
```
|
3660 |
+
Invoke the llama.cpp server or the CLI.
|
3661 |
+
|
3662 |
+
### CLI:
|
3663 |
+
```bash
|
3664 |
+
llama-cli --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
|
3665 |
+
```
|
3666 |
+
|
3667 |
+
### Server:
|
3668 |
+
```bash
|
3669 |
+
llama-server --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -c 2048
|
3670 |
+
```
|
3671 |
+
|
3672 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
3673 |
+
|
3674 |
+
Step 1: Clone llama.cpp from GitHub.
|
3675 |
+
```
|
3676 |
+
git clone https://github.com/ggerganov/llama.cpp
|
3677 |
+
```
|
3678 |
+
|
3679 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
3680 |
+
```
|
3681 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
3682 |
+
```
|
3683 |
+
|
3684 |
+
Step 3: Run inference through the main binary.
|
3685 |
+
```
|
3686 |
+
./llama-cli --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
|
3687 |
+
```
|
3688 |
+
or
|
3689 |
+
```
|
3690 |
+
./llama-server --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -c 2048
|
3691 |
+
```
|