fishbone64 commited on
Commit
486b6d5
·
verified ·
1 Parent(s): 30f8b74

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3691 -0
README.md ADDED
@@ -0,0 +1,3691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Alibaba-NLP/gte-Qwen2-7B-instruct
3
+ license: apache-2.0
4
+ tags:
5
+ - mteb
6
+ - sentence-transformers
7
+ - transformers
8
+ - Qwen2
9
+ - sentence-similarity
10
+ - llama-cpp
11
+ - gguf-my-repo
12
+ model-index:
13
+ - name: gte-qwen2-7B-instruct
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ name: MTEB AmazonCounterfactualClassification (en)
19
+ type: mteb/amazon_counterfactual
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 91.31343283582089
26
+ - type: ap
27
+ value: 67.64251402604096
28
+ - type: f1
29
+ value: 87.53372530755692
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ name: MTEB AmazonPolarityClassification
34
+ type: mteb/amazon_polarity
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 97.497825
41
+ - type: ap
42
+ value: 96.30329547047529
43
+ - type: f1
44
+ value: 97.49769793778039
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ name: MTEB AmazonReviewsClassification (en)
49
+ type: mteb/amazon_reviews_multi
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 62.564
56
+ - type: f1
57
+ value: 60.975777935041066
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ name: MTEB ArguAna
62
+ type: mteb/arguana
63
+ config: default
64
+ split: test
65
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 36.486000000000004
69
+ - type: map_at_10
70
+ value: 54.842
71
+ - type: map_at_100
72
+ value: 55.206999999999994
73
+ - type: map_at_1000
74
+ value: 55.206999999999994
75
+ - type: map_at_3
76
+ value: 49.893
77
+ - type: map_at_5
78
+ value: 53.105000000000004
79
+ - type: mrr_at_1
80
+ value: 37.34
81
+ - type: mrr_at_10
82
+ value: 55.143
83
+ - type: mrr_at_100
84
+ value: 55.509
85
+ - type: mrr_at_1000
86
+ value: 55.509
87
+ - type: mrr_at_3
88
+ value: 50.212999999999994
89
+ - type: mrr_at_5
90
+ value: 53.432
91
+ - type: ndcg_at_1
92
+ value: 36.486000000000004
93
+ - type: ndcg_at_10
94
+ value: 64.273
95
+ - type: ndcg_at_100
96
+ value: 65.66199999999999
97
+ - type: ndcg_at_1000
98
+ value: 65.66199999999999
99
+ - type: ndcg_at_3
100
+ value: 54.352999999999994
101
+ - type: ndcg_at_5
102
+ value: 60.131
103
+ - type: precision_at_1
104
+ value: 36.486000000000004
105
+ - type: precision_at_10
106
+ value: 9.395000000000001
107
+ - type: precision_at_100
108
+ value: 0.996
109
+ - type: precision_at_1000
110
+ value: 0.1
111
+ - type: precision_at_3
112
+ value: 22.428
113
+ - type: precision_at_5
114
+ value: 16.259
115
+ - type: recall_at_1
116
+ value: 36.486000000000004
117
+ - type: recall_at_10
118
+ value: 93.95400000000001
119
+ - type: recall_at_100
120
+ value: 99.644
121
+ - type: recall_at_1000
122
+ value: 99.644
123
+ - type: recall_at_3
124
+ value: 67.283
125
+ - type: recall_at_5
126
+ value: 81.294
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ name: MTEB ArxivClusteringP2P
131
+ type: mteb/arxiv-clustering-p2p
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 56.461169803700564
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ name: MTEB ArxivClusteringS2S
142
+ type: mteb/arxiv-clustering-s2s
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 51.73600434466286
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ name: MTEB AskUbuntuDupQuestions
153
+ type: mteb/askubuntudupquestions-reranking
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 67.57827065898053
160
+ - type: mrr
161
+ value: 79.08136569493911
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ name: MTEB BIOSSES
166
+ type: mteb/biosses-sts
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 83.53324575999243
173
+ - type: cos_sim_spearman
174
+ value: 81.37173362822374
175
+ - type: euclidean_pearson
176
+ value: 82.19243335103444
177
+ - type: euclidean_spearman
178
+ value: 81.33679307304334
179
+ - type: manhattan_pearson
180
+ value: 82.38752665975699
181
+ - type: manhattan_spearman
182
+ value: 81.31510583189689
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ name: MTEB Banking77Classification
187
+ type: mteb/banking77
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 87.56818181818181
194
+ - type: f1
195
+ value: 87.25826722019875
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ name: MTEB BiorxivClusteringP2P
200
+ type: mteb/biorxiv-clustering-p2p
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 50.09239610327673
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ name: MTEB BiorxivClusteringS2S
211
+ type: mteb/biorxiv-clustering-s2s
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 46.64733054606282
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ name: MTEB CQADupstackAndroidRetrieval
222
+ type: BeIR/cqadupstack
223
+ config: default
224
+ split: test
225
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 33.997
229
+ - type: map_at_10
230
+ value: 48.176
231
+ - type: map_at_100
232
+ value: 49.82
233
+ - type: map_at_1000
234
+ value: 49.924
235
+ - type: map_at_3
236
+ value: 43.626
237
+ - type: map_at_5
238
+ value: 46.275
239
+ - type: mrr_at_1
240
+ value: 42.059999999999995
241
+ - type: mrr_at_10
242
+ value: 53.726
243
+ - type: mrr_at_100
244
+ value: 54.398
245
+ - type: mrr_at_1000
246
+ value: 54.416
247
+ - type: mrr_at_3
248
+ value: 50.714999999999996
249
+ - type: mrr_at_5
250
+ value: 52.639
251
+ - type: ndcg_at_1
252
+ value: 42.059999999999995
253
+ - type: ndcg_at_10
254
+ value: 55.574999999999996
255
+ - type: ndcg_at_100
256
+ value: 60.744
257
+ - type: ndcg_at_1000
258
+ value: 61.85699999999999
259
+ - type: ndcg_at_3
260
+ value: 49.363
261
+ - type: ndcg_at_5
262
+ value: 52.44
263
+ - type: precision_at_1
264
+ value: 42.059999999999995
265
+ - type: precision_at_10
266
+ value: 11.101999999999999
267
+ - type: precision_at_100
268
+ value: 1.73
269
+ - type: precision_at_1000
270
+ value: 0.218
271
+ - type: precision_at_3
272
+ value: 24.464
273
+ - type: precision_at_5
274
+ value: 18.026
275
+ - type: recall_at_1
276
+ value: 33.997
277
+ - type: recall_at_10
278
+ value: 70.35900000000001
279
+ - type: recall_at_100
280
+ value: 91.642
281
+ - type: recall_at_1000
282
+ value: 97.977
283
+ - type: recall_at_3
284
+ value: 52.76
285
+ - type: recall_at_5
286
+ value: 61.148
287
+ - task:
288
+ type: Retrieval
289
+ dataset:
290
+ name: MTEB CQADupstackEnglishRetrieval
291
+ type: BeIR/cqadupstack
292
+ config: default
293
+ split: test
294
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
295
+ metrics:
296
+ - type: map_at_1
297
+ value: 35.884
298
+ - type: map_at_10
299
+ value: 48.14
300
+ - type: map_at_100
301
+ value: 49.5
302
+ - type: map_at_1000
303
+ value: 49.63
304
+ - type: map_at_3
305
+ value: 44.646
306
+ - type: map_at_5
307
+ value: 46.617999999999995
308
+ - type: mrr_at_1
309
+ value: 44.458999999999996
310
+ - type: mrr_at_10
311
+ value: 53.751000000000005
312
+ - type: mrr_at_100
313
+ value: 54.37800000000001
314
+ - type: mrr_at_1000
315
+ value: 54.415
316
+ - type: mrr_at_3
317
+ value: 51.815
318
+ - type: mrr_at_5
319
+ value: 52.882
320
+ - type: ndcg_at_1
321
+ value: 44.458999999999996
322
+ - type: ndcg_at_10
323
+ value: 54.157
324
+ - type: ndcg_at_100
325
+ value: 58.362
326
+ - type: ndcg_at_1000
327
+ value: 60.178
328
+ - type: ndcg_at_3
329
+ value: 49.661
330
+ - type: ndcg_at_5
331
+ value: 51.74999999999999
332
+ - type: precision_at_1
333
+ value: 44.458999999999996
334
+ - type: precision_at_10
335
+ value: 10.248
336
+ - type: precision_at_100
337
+ value: 1.5890000000000002
338
+ - type: precision_at_1000
339
+ value: 0.207
340
+ - type: precision_at_3
341
+ value: 23.928
342
+ - type: precision_at_5
343
+ value: 16.878999999999998
344
+ - type: recall_at_1
345
+ value: 35.884
346
+ - type: recall_at_10
347
+ value: 64.798
348
+ - type: recall_at_100
349
+ value: 82.345
350
+ - type: recall_at_1000
351
+ value: 93.267
352
+ - type: recall_at_3
353
+ value: 51.847
354
+ - type: recall_at_5
355
+ value: 57.601
356
+ - task:
357
+ type: Retrieval
358
+ dataset:
359
+ name: MTEB CQADupstackGamingRetrieval
360
+ type: BeIR/cqadupstack
361
+ config: default
362
+ split: test
363
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
364
+ metrics:
365
+ - type: map_at_1
366
+ value: 39.383
367
+ - type: map_at_10
368
+ value: 53.714
369
+ - type: map_at_100
370
+ value: 54.838
371
+ - type: map_at_1000
372
+ value: 54.87800000000001
373
+ - type: map_at_3
374
+ value: 50.114999999999995
375
+ - type: map_at_5
376
+ value: 52.153000000000006
377
+ - type: mrr_at_1
378
+ value: 45.016
379
+ - type: mrr_at_10
380
+ value: 56.732000000000006
381
+ - type: mrr_at_100
382
+ value: 57.411
383
+ - type: mrr_at_1000
384
+ value: 57.431
385
+ - type: mrr_at_3
386
+ value: 54.044000000000004
387
+ - type: mrr_at_5
388
+ value: 55.639
389
+ - type: ndcg_at_1
390
+ value: 45.016
391
+ - type: ndcg_at_10
392
+ value: 60.228
393
+ - type: ndcg_at_100
394
+ value: 64.277
395
+ - type: ndcg_at_1000
396
+ value: 65.07
397
+ - type: ndcg_at_3
398
+ value: 54.124
399
+ - type: ndcg_at_5
400
+ value: 57.147000000000006
401
+ - type: precision_at_1
402
+ value: 45.016
403
+ - type: precision_at_10
404
+ value: 9.937
405
+ - type: precision_at_100
406
+ value: 1.288
407
+ - type: precision_at_1000
408
+ value: 0.13899999999999998
409
+ - type: precision_at_3
410
+ value: 24.471999999999998
411
+ - type: precision_at_5
412
+ value: 16.991
413
+ - type: recall_at_1
414
+ value: 39.383
415
+ - type: recall_at_10
416
+ value: 76.175
417
+ - type: recall_at_100
418
+ value: 93.02
419
+ - type: recall_at_1000
420
+ value: 98.60900000000001
421
+ - type: recall_at_3
422
+ value: 60.265
423
+ - type: recall_at_5
424
+ value: 67.46600000000001
425
+ - task:
426
+ type: Retrieval
427
+ dataset:
428
+ name: MTEB CQADupstackGisRetrieval
429
+ type: BeIR/cqadupstack
430
+ config: default
431
+ split: test
432
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
433
+ metrics:
434
+ - type: map_at_1
435
+ value: 27.426000000000002
436
+ - type: map_at_10
437
+ value: 37.397000000000006
438
+ - type: map_at_100
439
+ value: 38.61
440
+ - type: map_at_1000
441
+ value: 38.678000000000004
442
+ - type: map_at_3
443
+ value: 34.150999999999996
444
+ - type: map_at_5
445
+ value: 36.137
446
+ - type: mrr_at_1
447
+ value: 29.944
448
+ - type: mrr_at_10
449
+ value: 39.654
450
+ - type: mrr_at_100
451
+ value: 40.638000000000005
452
+ - type: mrr_at_1000
453
+ value: 40.691
454
+ - type: mrr_at_3
455
+ value: 36.817
456
+ - type: mrr_at_5
457
+ value: 38.524
458
+ - type: ndcg_at_1
459
+ value: 29.944
460
+ - type: ndcg_at_10
461
+ value: 43.094
462
+ - type: ndcg_at_100
463
+ value: 48.789
464
+ - type: ndcg_at_1000
465
+ value: 50.339999999999996
466
+ - type: ndcg_at_3
467
+ value: 36.984
468
+ - type: ndcg_at_5
469
+ value: 40.248
470
+ - type: precision_at_1
471
+ value: 29.944
472
+ - type: precision_at_10
473
+ value: 6.78
474
+ - type: precision_at_100
475
+ value: 1.024
476
+ - type: precision_at_1000
477
+ value: 0.11800000000000001
478
+ - type: precision_at_3
479
+ value: 15.895000000000001
480
+ - type: precision_at_5
481
+ value: 11.39
482
+ - type: recall_at_1
483
+ value: 27.426000000000002
484
+ - type: recall_at_10
485
+ value: 58.464000000000006
486
+ - type: recall_at_100
487
+ value: 84.193
488
+ - type: recall_at_1000
489
+ value: 95.52000000000001
490
+ - type: recall_at_3
491
+ value: 42.172
492
+ - type: recall_at_5
493
+ value: 50.101
494
+ - task:
495
+ type: Retrieval
496
+ dataset:
497
+ name: MTEB CQADupstackMathematicaRetrieval
498
+ type: BeIR/cqadupstack
499
+ config: default
500
+ split: test
501
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
502
+ metrics:
503
+ - type: map_at_1
504
+ value: 19.721
505
+ - type: map_at_10
506
+ value: 31.604
507
+ - type: map_at_100
508
+ value: 32.972
509
+ - type: map_at_1000
510
+ value: 33.077
511
+ - type: map_at_3
512
+ value: 27.218999999999998
513
+ - type: map_at_5
514
+ value: 29.53
515
+ - type: mrr_at_1
516
+ value: 25.0
517
+ - type: mrr_at_10
518
+ value: 35.843
519
+ - type: mrr_at_100
520
+ value: 36.785000000000004
521
+ - type: mrr_at_1000
522
+ value: 36.842000000000006
523
+ - type: mrr_at_3
524
+ value: 32.193
525
+ - type: mrr_at_5
526
+ value: 34.264
527
+ - type: ndcg_at_1
528
+ value: 25.0
529
+ - type: ndcg_at_10
530
+ value: 38.606
531
+ - type: ndcg_at_100
532
+ value: 44.272
533
+ - type: ndcg_at_1000
534
+ value: 46.527
535
+ - type: ndcg_at_3
536
+ value: 30.985000000000003
537
+ - type: ndcg_at_5
538
+ value: 34.43
539
+ - type: precision_at_1
540
+ value: 25.0
541
+ - type: precision_at_10
542
+ value: 7.811
543
+ - type: precision_at_100
544
+ value: 1.203
545
+ - type: precision_at_1000
546
+ value: 0.15
547
+ - type: precision_at_3
548
+ value: 15.423
549
+ - type: precision_at_5
550
+ value: 11.791
551
+ - type: recall_at_1
552
+ value: 19.721
553
+ - type: recall_at_10
554
+ value: 55.625
555
+ - type: recall_at_100
556
+ value: 79.34400000000001
557
+ - type: recall_at_1000
558
+ value: 95.208
559
+ - type: recall_at_3
560
+ value: 35.19
561
+ - type: recall_at_5
562
+ value: 43.626
563
+ - task:
564
+ type: Retrieval
565
+ dataset:
566
+ name: MTEB CQADupstackPhysicsRetrieval
567
+ type: BeIR/cqadupstack
568
+ config: default
569
+ split: test
570
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
571
+ metrics:
572
+ - type: map_at_1
573
+ value: 33.784
574
+ - type: map_at_10
575
+ value: 47.522
576
+ - type: map_at_100
577
+ value: 48.949999999999996
578
+ - type: map_at_1000
579
+ value: 49.038
580
+ - type: map_at_3
581
+ value: 43.284
582
+ - type: map_at_5
583
+ value: 45.629
584
+ - type: mrr_at_1
585
+ value: 41.482
586
+ - type: mrr_at_10
587
+ value: 52.830999999999996
588
+ - type: mrr_at_100
589
+ value: 53.559999999999995
590
+ - type: mrr_at_1000
591
+ value: 53.588
592
+ - type: mrr_at_3
593
+ value: 50.016000000000005
594
+ - type: mrr_at_5
595
+ value: 51.614000000000004
596
+ - type: ndcg_at_1
597
+ value: 41.482
598
+ - type: ndcg_at_10
599
+ value: 54.569
600
+ - type: ndcg_at_100
601
+ value: 59.675999999999995
602
+ - type: ndcg_at_1000
603
+ value: 60.989000000000004
604
+ - type: ndcg_at_3
605
+ value: 48.187000000000005
606
+ - type: ndcg_at_5
607
+ value: 51.183
608
+ - type: precision_at_1
609
+ value: 41.482
610
+ - type: precision_at_10
611
+ value: 10.221
612
+ - type: precision_at_100
613
+ value: 1.486
614
+ - type: precision_at_1000
615
+ value: 0.17500000000000002
616
+ - type: precision_at_3
617
+ value: 23.548
618
+ - type: precision_at_5
619
+ value: 16.805
620
+ - type: recall_at_1
621
+ value: 33.784
622
+ - type: recall_at_10
623
+ value: 69.798
624
+ - type: recall_at_100
625
+ value: 90.098
626
+ - type: recall_at_1000
627
+ value: 98.176
628
+ - type: recall_at_3
629
+ value: 52.127
630
+ - type: recall_at_5
631
+ value: 59.861
632
+ - task:
633
+ type: Retrieval
634
+ dataset:
635
+ name: MTEB CQADupstackProgrammersRetrieval
636
+ type: BeIR/cqadupstack
637
+ config: default
638
+ split: test
639
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
640
+ metrics:
641
+ - type: map_at_1
642
+ value: 28.038999999999998
643
+ - type: map_at_10
644
+ value: 41.904
645
+ - type: map_at_100
646
+ value: 43.36
647
+ - type: map_at_1000
648
+ value: 43.453
649
+ - type: map_at_3
650
+ value: 37.785999999999994
651
+ - type: map_at_5
652
+ value: 40.105000000000004
653
+ - type: mrr_at_1
654
+ value: 35.046
655
+ - type: mrr_at_10
656
+ value: 46.926
657
+ - type: mrr_at_100
658
+ value: 47.815000000000005
659
+ - type: mrr_at_1000
660
+ value: 47.849000000000004
661
+ - type: mrr_at_3
662
+ value: 44.273
663
+ - type: mrr_at_5
664
+ value: 45.774
665
+ - type: ndcg_at_1
666
+ value: 35.046
667
+ - type: ndcg_at_10
668
+ value: 48.937000000000005
669
+ - type: ndcg_at_100
670
+ value: 54.544000000000004
671
+ - type: ndcg_at_1000
672
+ value: 56.069
673
+ - type: ndcg_at_3
674
+ value: 42.858000000000004
675
+ - type: ndcg_at_5
676
+ value: 45.644
677
+ - type: precision_at_1
678
+ value: 35.046
679
+ - type: precision_at_10
680
+ value: 9.452
681
+ - type: precision_at_100
682
+ value: 1.429
683
+ - type: precision_at_1000
684
+ value: 0.173
685
+ - type: precision_at_3
686
+ value: 21.346999999999998
687
+ - type: precision_at_5
688
+ value: 15.342
689
+ - type: recall_at_1
690
+ value: 28.038999999999998
691
+ - type: recall_at_10
692
+ value: 64.59700000000001
693
+ - type: recall_at_100
694
+ value: 87.735
695
+ - type: recall_at_1000
696
+ value: 97.41300000000001
697
+ - type: recall_at_3
698
+ value: 47.368
699
+ - type: recall_at_5
700
+ value: 54.93900000000001
701
+ - task:
702
+ type: Retrieval
703
+ dataset:
704
+ name: MTEB CQADupstackRetrieval
705
+ type: BeIR/cqadupstack
706
+ config: default
707
+ split: test
708
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
709
+ metrics:
710
+ - type: map_at_1
711
+ value: 28.17291666666667
712
+ - type: map_at_10
713
+ value: 40.025749999999995
714
+ - type: map_at_100
715
+ value: 41.39208333333333
716
+ - type: map_at_1000
717
+ value: 41.499249999999996
718
+ - type: map_at_3
719
+ value: 36.347
720
+ - type: map_at_5
721
+ value: 38.41391666666667
722
+ - type: mrr_at_1
723
+ value: 33.65925
724
+ - type: mrr_at_10
725
+ value: 44.085499999999996
726
+ - type: mrr_at_100
727
+ value: 44.94116666666667
728
+ - type: mrr_at_1000
729
+ value: 44.9855
730
+ - type: mrr_at_3
731
+ value: 41.2815
732
+ - type: mrr_at_5
733
+ value: 42.91491666666666
734
+ - type: ndcg_at_1
735
+ value: 33.65925
736
+ - type: ndcg_at_10
737
+ value: 46.430833333333325
738
+ - type: ndcg_at_100
739
+ value: 51.761
740
+ - type: ndcg_at_1000
741
+ value: 53.50899999999999
742
+ - type: ndcg_at_3
743
+ value: 40.45133333333333
744
+ - type: ndcg_at_5
745
+ value: 43.31483333333334
746
+ - type: precision_at_1
747
+ value: 33.65925
748
+ - type: precision_at_10
749
+ value: 8.4995
750
+ - type: precision_at_100
751
+ value: 1.3210000000000004
752
+ - type: precision_at_1000
753
+ value: 0.16591666666666666
754
+ - type: precision_at_3
755
+ value: 19.165083333333335
756
+ - type: precision_at_5
757
+ value: 13.81816666666667
758
+ - type: recall_at_1
759
+ value: 28.17291666666667
760
+ - type: recall_at_10
761
+ value: 61.12624999999999
762
+ - type: recall_at_100
763
+ value: 83.97266666666667
764
+ - type: recall_at_1000
765
+ value: 95.66550000000001
766
+ - type: recall_at_3
767
+ value: 44.661249999999995
768
+ - type: recall_at_5
769
+ value: 51.983333333333334
770
+ - type: map_at_1
771
+ value: 17.936
772
+ - type: map_at_10
773
+ value: 27.399
774
+ - type: map_at_100
775
+ value: 28.632
776
+ - type: map_at_1000
777
+ value: 28.738000000000003
778
+ - type: map_at_3
779
+ value: 24.456
780
+ - type: map_at_5
781
+ value: 26.06
782
+ - type: mrr_at_1
783
+ value: 19.224
784
+ - type: mrr_at_10
785
+ value: 28.998
786
+ - type: mrr_at_100
787
+ value: 30.11
788
+ - type: mrr_at_1000
789
+ value: 30.177
790
+ - type: mrr_at_3
791
+ value: 26.247999999999998
792
+ - type: mrr_at_5
793
+ value: 27.708
794
+ - type: ndcg_at_1
795
+ value: 19.224
796
+ - type: ndcg_at_10
797
+ value: 32.911
798
+ - type: ndcg_at_100
799
+ value: 38.873999999999995
800
+ - type: ndcg_at_1000
801
+ value: 41.277
802
+ - type: ndcg_at_3
803
+ value: 27.142
804
+ - type: ndcg_at_5
805
+ value: 29.755
806
+ - type: precision_at_1
807
+ value: 19.224
808
+ - type: precision_at_10
809
+ value: 5.6930000000000005
810
+ - type: precision_at_100
811
+ value: 0.9259999999999999
812
+ - type: precision_at_1000
813
+ value: 0.126
814
+ - type: precision_at_3
815
+ value: 12.138
816
+ - type: precision_at_5
817
+ value: 8.909
818
+ - type: recall_at_1
819
+ value: 17.936
820
+ - type: recall_at_10
821
+ value: 48.096
822
+ - type: recall_at_100
823
+ value: 75.389
824
+ - type: recall_at_1000
825
+ value: 92.803
826
+ - type: recall_at_3
827
+ value: 32.812999999999995
828
+ - type: recall_at_5
829
+ value: 38.851
830
+ - task:
831
+ type: Retrieval
832
+ dataset:
833
+ name: MTEB CQADupstackStatsRetrieval
834
+ type: BeIR/cqadupstack
835
+ config: default
836
+ split: test
837
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
838
+ metrics:
839
+ - type: map_at_1
840
+ value: 24.681
841
+ - type: map_at_10
842
+ value: 34.892
843
+ - type: map_at_100
844
+ value: 35.996
845
+ - type: map_at_1000
846
+ value: 36.083
847
+ - type: map_at_3
848
+ value: 31.491999999999997
849
+ - type: map_at_5
850
+ value: 33.632
851
+ - type: mrr_at_1
852
+ value: 28.528
853
+ - type: mrr_at_10
854
+ value: 37.694
855
+ - type: mrr_at_100
856
+ value: 38.613
857
+ - type: mrr_at_1000
858
+ value: 38.668
859
+ - type: mrr_at_3
860
+ value: 34.714
861
+ - type: mrr_at_5
862
+ value: 36.616
863
+ - type: ndcg_at_1
864
+ value: 28.528
865
+ - type: ndcg_at_10
866
+ value: 40.703
867
+ - type: ndcg_at_100
868
+ value: 45.993
869
+ - type: ndcg_at_1000
870
+ value: 47.847
871
+ - type: ndcg_at_3
872
+ value: 34.622
873
+ - type: ndcg_at_5
874
+ value: 38.035999999999994
875
+ - type: precision_at_1
876
+ value: 28.528
877
+ - type: precision_at_10
878
+ value: 6.902
879
+ - type: precision_at_100
880
+ value: 1.0370000000000001
881
+ - type: precision_at_1000
882
+ value: 0.126
883
+ - type: precision_at_3
884
+ value: 15.798000000000002
885
+ - type: precision_at_5
886
+ value: 11.655999999999999
887
+ - type: recall_at_1
888
+ value: 24.681
889
+ - type: recall_at_10
890
+ value: 55.81
891
+ - type: recall_at_100
892
+ value: 79.785
893
+ - type: recall_at_1000
894
+ value: 92.959
895
+ - type: recall_at_3
896
+ value: 39.074
897
+ - type: recall_at_5
898
+ value: 47.568
899
+ - task:
900
+ type: Retrieval
901
+ dataset:
902
+ name: MTEB CQADupstackTexRetrieval
903
+ type: BeIR/cqadupstack
904
+ config: default
905
+ split: test
906
+ revision: 46989137a86843e03a6195de44b09deda022eec7
907
+ metrics:
908
+ - type: map_at_1
909
+ value: 18.627
910
+ - type: map_at_10
911
+ value: 27.872000000000003
912
+ - type: map_at_100
913
+ value: 29.237999999999996
914
+ - type: map_at_1000
915
+ value: 29.363
916
+ - type: map_at_3
917
+ value: 24.751
918
+ - type: map_at_5
919
+ value: 26.521
920
+ - type: mrr_at_1
921
+ value: 23.021
922
+ - type: mrr_at_10
923
+ value: 31.924000000000003
924
+ - type: mrr_at_100
925
+ value: 32.922000000000004
926
+ - type: mrr_at_1000
927
+ value: 32.988
928
+ - type: mrr_at_3
929
+ value: 29.192
930
+ - type: mrr_at_5
931
+ value: 30.798
932
+ - type: ndcg_at_1
933
+ value: 23.021
934
+ - type: ndcg_at_10
935
+ value: 33.535
936
+ - type: ndcg_at_100
937
+ value: 39.732
938
+ - type: ndcg_at_1000
939
+ value: 42.201
940
+ - type: ndcg_at_3
941
+ value: 28.153
942
+ - type: ndcg_at_5
943
+ value: 30.746000000000002
944
+ - type: precision_at_1
945
+ value: 23.021
946
+ - type: precision_at_10
947
+ value: 6.459
948
+ - type: precision_at_100
949
+ value: 1.1320000000000001
950
+ - type: precision_at_1000
951
+ value: 0.153
952
+ - type: precision_at_3
953
+ value: 13.719000000000001
954
+ - type: precision_at_5
955
+ value: 10.193000000000001
956
+ - type: recall_at_1
957
+ value: 18.627
958
+ - type: recall_at_10
959
+ value: 46.463
960
+ - type: recall_at_100
961
+ value: 74.226
962
+ - type: recall_at_1000
963
+ value: 91.28500000000001
964
+ - type: recall_at_3
965
+ value: 31.357000000000003
966
+ - type: recall_at_5
967
+ value: 38.067
968
+ - task:
969
+ type: Retrieval
970
+ dataset:
971
+ name: MTEB CQADupstackUnixRetrieval
972
+ type: BeIR/cqadupstack
973
+ config: default
974
+ split: test
975
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
976
+ metrics:
977
+ - type: map_at_1
978
+ value: 31.457
979
+ - type: map_at_10
980
+ value: 42.888
981
+ - type: map_at_100
982
+ value: 44.24
983
+ - type: map_at_1000
984
+ value: 44.327
985
+ - type: map_at_3
986
+ value: 39.588
987
+ - type: map_at_5
988
+ value: 41.423
989
+ - type: mrr_at_1
990
+ value: 37.126999999999995
991
+ - type: mrr_at_10
992
+ value: 47.083000000000006
993
+ - type: mrr_at_100
994
+ value: 47.997
995
+ - type: mrr_at_1000
996
+ value: 48.044
997
+ - type: mrr_at_3
998
+ value: 44.574000000000005
999
+ - type: mrr_at_5
1000
+ value: 46.202
1001
+ - type: ndcg_at_1
1002
+ value: 37.126999999999995
1003
+ - type: ndcg_at_10
1004
+ value: 48.833
1005
+ - type: ndcg_at_100
1006
+ value: 54.327000000000005
1007
+ - type: ndcg_at_1000
1008
+ value: 56.011
1009
+ - type: ndcg_at_3
1010
+ value: 43.541999999999994
1011
+ - type: ndcg_at_5
1012
+ value: 46.127
1013
+ - type: precision_at_1
1014
+ value: 37.126999999999995
1015
+ - type: precision_at_10
1016
+ value: 8.376999999999999
1017
+ - type: precision_at_100
1018
+ value: 1.2309999999999999
1019
+ - type: precision_at_1000
1020
+ value: 0.146
1021
+ - type: precision_at_3
1022
+ value: 20.211000000000002
1023
+ - type: precision_at_5
1024
+ value: 14.16
1025
+ - type: recall_at_1
1026
+ value: 31.457
1027
+ - type: recall_at_10
1028
+ value: 62.369
1029
+ - type: recall_at_100
1030
+ value: 85.444
1031
+ - type: recall_at_1000
1032
+ value: 96.65599999999999
1033
+ - type: recall_at_3
1034
+ value: 47.961
1035
+ - type: recall_at_5
1036
+ value: 54.676
1037
+ - task:
1038
+ type: Retrieval
1039
+ dataset:
1040
+ name: MTEB CQADupstackWebmastersRetrieval
1041
+ type: BeIR/cqadupstack
1042
+ config: default
1043
+ split: test
1044
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
1045
+ metrics:
1046
+ - type: map_at_1
1047
+ value: 27.139999999999997
1048
+ - type: map_at_10
1049
+ value: 38.801
1050
+ - type: map_at_100
1051
+ value: 40.549
1052
+ - type: map_at_1000
1053
+ value: 40.802
1054
+ - type: map_at_3
1055
+ value: 35.05
1056
+ - type: map_at_5
1057
+ value: 36.884
1058
+ - type: mrr_at_1
1059
+ value: 33.004
1060
+ - type: mrr_at_10
1061
+ value: 43.864
1062
+ - type: mrr_at_100
1063
+ value: 44.667
1064
+ - type: mrr_at_1000
1065
+ value: 44.717
1066
+ - type: mrr_at_3
1067
+ value: 40.777
1068
+ - type: mrr_at_5
1069
+ value: 42.319
1070
+ - type: ndcg_at_1
1071
+ value: 33.004
1072
+ - type: ndcg_at_10
1073
+ value: 46.022
1074
+ - type: ndcg_at_100
1075
+ value: 51.542
1076
+ - type: ndcg_at_1000
1077
+ value: 53.742000000000004
1078
+ - type: ndcg_at_3
1079
+ value: 39.795
1080
+ - type: ndcg_at_5
1081
+ value: 42.272
1082
+ - type: precision_at_1
1083
+ value: 33.004
1084
+ - type: precision_at_10
1085
+ value: 9.012
1086
+ - type: precision_at_100
1087
+ value: 1.7770000000000001
1088
+ - type: precision_at_1000
1089
+ value: 0.26
1090
+ - type: precision_at_3
1091
+ value: 19.038
1092
+ - type: precision_at_5
1093
+ value: 13.675999999999998
1094
+ - type: recall_at_1
1095
+ value: 27.139999999999997
1096
+ - type: recall_at_10
1097
+ value: 60.961
1098
+ - type: recall_at_100
1099
+ value: 84.451
1100
+ - type: recall_at_1000
1101
+ value: 98.113
1102
+ - type: recall_at_3
1103
+ value: 43.001
1104
+ - type: recall_at_5
1105
+ value: 49.896
1106
+ - task:
1107
+ type: Retrieval
1108
+ dataset:
1109
+ name: MTEB ClimateFEVER
1110
+ type: mteb/climate-fever
1111
+ config: default
1112
+ split: test
1113
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1114
+ metrics:
1115
+ - type: map_at_1
1116
+ value: 22.076999999999998
1117
+ - type: map_at_10
1118
+ value: 35.44
1119
+ - type: map_at_100
1120
+ value: 37.651
1121
+ - type: map_at_1000
1122
+ value: 37.824999999999996
1123
+ - type: map_at_3
1124
+ value: 30.764999999999997
1125
+ - type: map_at_5
1126
+ value: 33.26
1127
+ - type: mrr_at_1
1128
+ value: 50.163000000000004
1129
+ - type: mrr_at_10
1130
+ value: 61.207
1131
+ - type: mrr_at_100
1132
+ value: 61.675000000000004
1133
+ - type: mrr_at_1000
1134
+ value: 61.692
1135
+ - type: mrr_at_3
1136
+ value: 58.60999999999999
1137
+ - type: mrr_at_5
1138
+ value: 60.307
1139
+ - type: ndcg_at_1
1140
+ value: 50.163000000000004
1141
+ - type: ndcg_at_10
1142
+ value: 45.882
1143
+ - type: ndcg_at_100
1144
+ value: 53.239999999999995
1145
+ - type: ndcg_at_1000
1146
+ value: 55.852000000000004
1147
+ - type: ndcg_at_3
1148
+ value: 40.514
1149
+ - type: ndcg_at_5
1150
+ value: 42.038
1151
+ - type: precision_at_1
1152
+ value: 50.163000000000004
1153
+ - type: precision_at_10
1154
+ value: 13.466000000000001
1155
+ - type: precision_at_100
1156
+ value: 2.164
1157
+ - type: precision_at_1000
1158
+ value: 0.266
1159
+ - type: precision_at_3
1160
+ value: 29.707
1161
+ - type: precision_at_5
1162
+ value: 21.694
1163
+ - type: recall_at_1
1164
+ value: 22.076999999999998
1165
+ - type: recall_at_10
1166
+ value: 50.193
1167
+ - type: recall_at_100
1168
+ value: 74.993
1169
+ - type: recall_at_1000
1170
+ value: 89.131
1171
+ - type: recall_at_3
1172
+ value: 35.472
1173
+ - type: recall_at_5
1174
+ value: 41.814
1175
+ - task:
1176
+ type: Retrieval
1177
+ dataset:
1178
+ name: MTEB DBPedia
1179
+ type: mteb/dbpedia
1180
+ config: default
1181
+ split: test
1182
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1183
+ metrics:
1184
+ - type: map_at_1
1185
+ value: 9.953
1186
+ - type: map_at_10
1187
+ value: 24.515
1188
+ - type: map_at_100
1189
+ value: 36.173
1190
+ - type: map_at_1000
1191
+ value: 38.351
1192
+ - type: map_at_3
1193
+ value: 16.592000000000002
1194
+ - type: map_at_5
1195
+ value: 20.036
1196
+ - type: mrr_at_1
1197
+ value: 74.25
1198
+ - type: mrr_at_10
1199
+ value: 81.813
1200
+ - type: mrr_at_100
1201
+ value: 82.006
1202
+ - type: mrr_at_1000
1203
+ value: 82.011
1204
+ - type: mrr_at_3
1205
+ value: 80.875
1206
+ - type: mrr_at_5
1207
+ value: 81.362
1208
+ - type: ndcg_at_1
1209
+ value: 62.5
1210
+ - type: ndcg_at_10
1211
+ value: 52.42
1212
+ - type: ndcg_at_100
1213
+ value: 56.808
1214
+ - type: ndcg_at_1000
1215
+ value: 63.532999999999994
1216
+ - type: ndcg_at_3
1217
+ value: 56.654
1218
+ - type: ndcg_at_5
1219
+ value: 54.18300000000001
1220
+ - type: precision_at_1
1221
+ value: 74.25
1222
+ - type: precision_at_10
1223
+ value: 42.699999999999996
1224
+ - type: precision_at_100
1225
+ value: 13.675
1226
+ - type: precision_at_1000
1227
+ value: 2.664
1228
+ - type: precision_at_3
1229
+ value: 60.5
1230
+ - type: precision_at_5
1231
+ value: 52.800000000000004
1232
+ - type: recall_at_1
1233
+ value: 9.953
1234
+ - type: recall_at_10
1235
+ value: 30.253999999999998
1236
+ - type: recall_at_100
1237
+ value: 62.516000000000005
1238
+ - type: recall_at_1000
1239
+ value: 84.163
1240
+ - type: recall_at_3
1241
+ value: 18.13
1242
+ - type: recall_at_5
1243
+ value: 22.771
1244
+ - task:
1245
+ type: Classification
1246
+ dataset:
1247
+ name: MTEB EmotionClassification
1248
+ type: mteb/emotion
1249
+ config: default
1250
+ split: test
1251
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1252
+ metrics:
1253
+ - type: accuracy
1254
+ value: 79.455
1255
+ - type: f1
1256
+ value: 74.16798697647569
1257
+ - task:
1258
+ type: Retrieval
1259
+ dataset:
1260
+ name: MTEB FEVER
1261
+ type: mteb/fever
1262
+ config: default
1263
+ split: test
1264
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1265
+ metrics:
1266
+ - type: map_at_1
1267
+ value: 87.531
1268
+ - type: map_at_10
1269
+ value: 93.16799999999999
1270
+ - type: map_at_100
1271
+ value: 93.341
1272
+ - type: map_at_1000
1273
+ value: 93.349
1274
+ - type: map_at_3
1275
+ value: 92.444
1276
+ - type: map_at_5
1277
+ value: 92.865
1278
+ - type: mrr_at_1
1279
+ value: 94.014
1280
+ - type: mrr_at_10
1281
+ value: 96.761
1282
+ - type: mrr_at_100
1283
+ value: 96.762
1284
+ - type: mrr_at_1000
1285
+ value: 96.762
1286
+ - type: mrr_at_3
1287
+ value: 96.672
1288
+ - type: mrr_at_5
1289
+ value: 96.736
1290
+ - type: ndcg_at_1
1291
+ value: 94.014
1292
+ - type: ndcg_at_10
1293
+ value: 95.112
1294
+ - type: ndcg_at_100
1295
+ value: 95.578
1296
+ - type: ndcg_at_1000
1297
+ value: 95.68900000000001
1298
+ - type: ndcg_at_3
1299
+ value: 94.392
1300
+ - type: ndcg_at_5
1301
+ value: 94.72500000000001
1302
+ - type: precision_at_1
1303
+ value: 94.014
1304
+ - type: precision_at_10
1305
+ value: 11.065
1306
+ - type: precision_at_100
1307
+ value: 1.157
1308
+ - type: precision_at_1000
1309
+ value: 0.11800000000000001
1310
+ - type: precision_at_3
1311
+ value: 35.259
1312
+ - type: precision_at_5
1313
+ value: 21.599
1314
+ - type: recall_at_1
1315
+ value: 87.531
1316
+ - type: recall_at_10
1317
+ value: 97.356
1318
+ - type: recall_at_100
1319
+ value: 98.965
1320
+ - type: recall_at_1000
1321
+ value: 99.607
1322
+ - type: recall_at_3
1323
+ value: 95.312
1324
+ - type: recall_at_5
1325
+ value: 96.295
1326
+ - task:
1327
+ type: Retrieval
1328
+ dataset:
1329
+ name: MTEB FiQA2018
1330
+ type: mteb/fiqa
1331
+ config: default
1332
+ split: test
1333
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1334
+ metrics:
1335
+ - type: map_at_1
1336
+ value: 32.055
1337
+ - type: map_at_10
1338
+ value: 53.114
1339
+ - type: map_at_100
1340
+ value: 55.235
1341
+ - type: map_at_1000
1342
+ value: 55.345
1343
+ - type: map_at_3
1344
+ value: 45.854
1345
+ - type: map_at_5
1346
+ value: 50.025
1347
+ - type: mrr_at_1
1348
+ value: 60.34
1349
+ - type: mrr_at_10
1350
+ value: 68.804
1351
+ - type: mrr_at_100
1352
+ value: 69.309
1353
+ - type: mrr_at_1000
1354
+ value: 69.32199999999999
1355
+ - type: mrr_at_3
1356
+ value: 66.40899999999999
1357
+ - type: mrr_at_5
1358
+ value: 67.976
1359
+ - type: ndcg_at_1
1360
+ value: 60.34
1361
+ - type: ndcg_at_10
1362
+ value: 62.031000000000006
1363
+ - type: ndcg_at_100
1364
+ value: 68.00500000000001
1365
+ - type: ndcg_at_1000
1366
+ value: 69.286
1367
+ - type: ndcg_at_3
1368
+ value: 56.355999999999995
1369
+ - type: ndcg_at_5
1370
+ value: 58.687
1371
+ - type: precision_at_1
1372
+ value: 60.34
1373
+ - type: precision_at_10
1374
+ value: 17.176
1375
+ - type: precision_at_100
1376
+ value: 2.36
1377
+ - type: precision_at_1000
1378
+ value: 0.259
1379
+ - type: precision_at_3
1380
+ value: 37.14
1381
+ - type: precision_at_5
1382
+ value: 27.809
1383
+ - type: recall_at_1
1384
+ value: 32.055
1385
+ - type: recall_at_10
1386
+ value: 70.91
1387
+ - type: recall_at_100
1388
+ value: 91.83
1389
+ - type: recall_at_1000
1390
+ value: 98.871
1391
+ - type: recall_at_3
1392
+ value: 51.202999999999996
1393
+ - type: recall_at_5
1394
+ value: 60.563
1395
+ - task:
1396
+ type: Retrieval
1397
+ dataset:
1398
+ name: MTEB HotpotQA
1399
+ type: mteb/hotpotqa
1400
+ config: default
1401
+ split: test
1402
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1403
+ metrics:
1404
+ - type: map_at_1
1405
+ value: 43.68
1406
+ - type: map_at_10
1407
+ value: 64.389
1408
+ - type: map_at_100
1409
+ value: 65.24
1410
+ - type: map_at_1000
1411
+ value: 65.303
1412
+ - type: map_at_3
1413
+ value: 61.309000000000005
1414
+ - type: map_at_5
1415
+ value: 63.275999999999996
1416
+ - type: mrr_at_1
1417
+ value: 87.36
1418
+ - type: mrr_at_10
1419
+ value: 91.12
1420
+ - type: mrr_at_100
1421
+ value: 91.227
1422
+ - type: mrr_at_1000
1423
+ value: 91.229
1424
+ - type: mrr_at_3
1425
+ value: 90.57600000000001
1426
+ - type: mrr_at_5
1427
+ value: 90.912
1428
+ - type: ndcg_at_1
1429
+ value: 87.36
1430
+ - type: ndcg_at_10
1431
+ value: 73.076
1432
+ - type: ndcg_at_100
1433
+ value: 75.895
1434
+ - type: ndcg_at_1000
1435
+ value: 77.049
1436
+ - type: ndcg_at_3
1437
+ value: 68.929
1438
+ - type: ndcg_at_5
1439
+ value: 71.28
1440
+ - type: precision_at_1
1441
+ value: 87.36
1442
+ - type: precision_at_10
1443
+ value: 14.741000000000001
1444
+ - type: precision_at_100
1445
+ value: 1.694
1446
+ - type: precision_at_1000
1447
+ value: 0.185
1448
+ - type: precision_at_3
1449
+ value: 43.043
1450
+ - type: precision_at_5
1451
+ value: 27.681
1452
+ - type: recall_at_1
1453
+ value: 43.68
1454
+ - type: recall_at_10
1455
+ value: 73.707
1456
+ - type: recall_at_100
1457
+ value: 84.7
1458
+ - type: recall_at_1000
1459
+ value: 92.309
1460
+ - type: recall_at_3
1461
+ value: 64.564
1462
+ - type: recall_at_5
1463
+ value: 69.203
1464
+ - task:
1465
+ type: Classification
1466
+ dataset:
1467
+ name: MTEB ImdbClassification
1468
+ type: mteb/imdb
1469
+ config: default
1470
+ split: test
1471
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1472
+ metrics:
1473
+ - type: accuracy
1474
+ value: 96.75399999999999
1475
+ - type: ap
1476
+ value: 95.29389839242187
1477
+ - type: f1
1478
+ value: 96.75348377433475
1479
+ - task:
1480
+ type: Retrieval
1481
+ dataset:
1482
+ name: MTEB MSMARCO
1483
+ type: mteb/msmarco
1484
+ config: default
1485
+ split: dev
1486
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1487
+ metrics:
1488
+ - type: map_at_1
1489
+ value: 25.176
1490
+ - type: map_at_10
1491
+ value: 38.598
1492
+ - type: map_at_100
1493
+ value: 39.707
1494
+ - type: map_at_1000
1495
+ value: 39.744
1496
+ - type: map_at_3
1497
+ value: 34.566
1498
+ - type: map_at_5
1499
+ value: 36.863
1500
+ - type: mrr_at_1
1501
+ value: 25.874000000000002
1502
+ - type: mrr_at_10
1503
+ value: 39.214
1504
+ - type: mrr_at_100
1505
+ value: 40.251
1506
+ - type: mrr_at_1000
1507
+ value: 40.281
1508
+ - type: mrr_at_3
1509
+ value: 35.291
1510
+ - type: mrr_at_5
1511
+ value: 37.545
1512
+ - type: ndcg_at_1
1513
+ value: 25.874000000000002
1514
+ - type: ndcg_at_10
1515
+ value: 45.98
1516
+ - type: ndcg_at_100
1517
+ value: 51.197
1518
+ - type: ndcg_at_1000
1519
+ value: 52.073
1520
+ - type: ndcg_at_3
1521
+ value: 37.785999999999994
1522
+ - type: ndcg_at_5
1523
+ value: 41.870000000000005
1524
+ - type: precision_at_1
1525
+ value: 25.874000000000002
1526
+ - type: precision_at_10
1527
+ value: 7.181
1528
+ - type: precision_at_100
1529
+ value: 0.979
1530
+ - type: precision_at_1000
1531
+ value: 0.106
1532
+ - type: precision_at_3
1533
+ value: 16.051000000000002
1534
+ - type: precision_at_5
1535
+ value: 11.713
1536
+ - type: recall_at_1
1537
+ value: 25.176
1538
+ - type: recall_at_10
1539
+ value: 68.67699999999999
1540
+ - type: recall_at_100
1541
+ value: 92.55
1542
+ - type: recall_at_1000
1543
+ value: 99.164
1544
+ - type: recall_at_3
1545
+ value: 46.372
1546
+ - type: recall_at_5
1547
+ value: 56.16
1548
+ - task:
1549
+ type: Classification
1550
+ dataset:
1551
+ name: MTEB MTOPDomainClassification (en)
1552
+ type: mteb/mtop_domain
1553
+ config: en
1554
+ split: test
1555
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1556
+ metrics:
1557
+ - type: accuracy
1558
+ value: 99.03784769721841
1559
+ - type: f1
1560
+ value: 98.97791641821495
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ name: MTEB MTOPIntentClassification (en)
1565
+ type: mteb/mtop_intent
1566
+ config: en
1567
+ split: test
1568
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 91.88326493388054
1572
+ - type: f1
1573
+ value: 73.74809928034335
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ name: MTEB MassiveIntentClassification (en)
1578
+ type: mteb/amazon_massive_intent
1579
+ config: en
1580
+ split: test
1581
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 85.41358439811701
1585
+ - type: f1
1586
+ value: 83.503679460639
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ name: MTEB MassiveScenarioClassification (en)
1591
+ type: mteb/amazon_massive_scenario
1592
+ config: en
1593
+ split: test
1594
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 89.77135171486215
1598
+ - type: f1
1599
+ value: 88.89843747468366
1600
+ - task:
1601
+ type: Clustering
1602
+ dataset:
1603
+ name: MTEB MedrxivClusteringP2P
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ config: default
1606
+ split: test
1607
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1608
+ metrics:
1609
+ - type: v_measure
1610
+ value: 46.22695362087359
1611
+ - task:
1612
+ type: Clustering
1613
+ dataset:
1614
+ name: MTEB MedrxivClusteringS2S
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ config: default
1617
+ split: test
1618
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1619
+ metrics:
1620
+ - type: v_measure
1621
+ value: 44.132372165849425
1622
+ - task:
1623
+ type: Reranking
1624
+ dataset:
1625
+ name: MTEB MindSmallReranking
1626
+ type: mteb/mind_small
1627
+ config: default
1628
+ split: test
1629
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1630
+ metrics:
1631
+ - type: map
1632
+ value: 33.35680810650402
1633
+ - type: mrr
1634
+ value: 34.72625715637218
1635
+ - task:
1636
+ type: Retrieval
1637
+ dataset:
1638
+ name: MTEB NFCorpus
1639
+ type: mteb/nfcorpus
1640
+ config: default
1641
+ split: test
1642
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1643
+ metrics:
1644
+ - type: map_at_1
1645
+ value: 7.165000000000001
1646
+ - type: map_at_10
1647
+ value: 15.424
1648
+ - type: map_at_100
1649
+ value: 20.28
1650
+ - type: map_at_1000
1651
+ value: 22.065
1652
+ - type: map_at_3
1653
+ value: 11.236
1654
+ - type: map_at_5
1655
+ value: 13.025999999999998
1656
+ - type: mrr_at_1
1657
+ value: 51.702999999999996
1658
+ - type: mrr_at_10
1659
+ value: 59.965
1660
+ - type: mrr_at_100
1661
+ value: 60.667
1662
+ - type: mrr_at_1000
1663
+ value: 60.702999999999996
1664
+ - type: mrr_at_3
1665
+ value: 58.772000000000006
1666
+ - type: mrr_at_5
1667
+ value: 59.267
1668
+ - type: ndcg_at_1
1669
+ value: 49.536
1670
+ - type: ndcg_at_10
1671
+ value: 40.6
1672
+ - type: ndcg_at_100
1673
+ value: 37.848
1674
+ - type: ndcg_at_1000
1675
+ value: 46.657
1676
+ - type: ndcg_at_3
1677
+ value: 46.117999999999995
1678
+ - type: ndcg_at_5
1679
+ value: 43.619
1680
+ - type: precision_at_1
1681
+ value: 51.393
1682
+ - type: precision_at_10
1683
+ value: 30.31
1684
+ - type: precision_at_100
1685
+ value: 9.972
1686
+ - type: precision_at_1000
1687
+ value: 2.329
1688
+ - type: precision_at_3
1689
+ value: 43.137
1690
+ - type: precision_at_5
1691
+ value: 37.585
1692
+ - type: recall_at_1
1693
+ value: 7.165000000000001
1694
+ - type: recall_at_10
1695
+ value: 19.689999999999998
1696
+ - type: recall_at_100
1697
+ value: 39.237
1698
+ - type: recall_at_1000
1699
+ value: 71.417
1700
+ - type: recall_at_3
1701
+ value: 12.247
1702
+ - type: recall_at_5
1703
+ value: 14.902999999999999
1704
+ - task:
1705
+ type: Retrieval
1706
+ dataset:
1707
+ name: MTEB NQ
1708
+ type: mteb/nq
1709
+ config: default
1710
+ split: test
1711
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1712
+ metrics:
1713
+ - type: map_at_1
1714
+ value: 42.653999999999996
1715
+ - type: map_at_10
1716
+ value: 59.611999999999995
1717
+ - type: map_at_100
1718
+ value: 60.32300000000001
1719
+ - type: map_at_1000
1720
+ value: 60.336
1721
+ - type: map_at_3
1722
+ value: 55.584999999999994
1723
+ - type: map_at_5
1724
+ value: 58.19
1725
+ - type: mrr_at_1
1726
+ value: 47.683
1727
+ - type: mrr_at_10
1728
+ value: 62.06700000000001
1729
+ - type: mrr_at_100
1730
+ value: 62.537
1731
+ - type: mrr_at_1000
1732
+ value: 62.544999999999995
1733
+ - type: mrr_at_3
1734
+ value: 59.178
1735
+ - type: mrr_at_5
1736
+ value: 61.034
1737
+ - type: ndcg_at_1
1738
+ value: 47.654
1739
+ - type: ndcg_at_10
1740
+ value: 67.001
1741
+ - type: ndcg_at_100
1742
+ value: 69.73899999999999
1743
+ - type: ndcg_at_1000
1744
+ value: 69.986
1745
+ - type: ndcg_at_3
1746
+ value: 59.95700000000001
1747
+ - type: ndcg_at_5
1748
+ value: 64.025
1749
+ - type: precision_at_1
1750
+ value: 47.654
1751
+ - type: precision_at_10
1752
+ value: 10.367999999999999
1753
+ - type: precision_at_100
1754
+ value: 1.192
1755
+ - type: precision_at_1000
1756
+ value: 0.121
1757
+ - type: precision_at_3
1758
+ value: 26.651000000000003
1759
+ - type: precision_at_5
1760
+ value: 18.459
1761
+ - type: recall_at_1
1762
+ value: 42.653999999999996
1763
+ - type: recall_at_10
1764
+ value: 86.619
1765
+ - type: recall_at_100
1766
+ value: 98.04899999999999
1767
+ - type: recall_at_1000
1768
+ value: 99.812
1769
+ - type: recall_at_3
1770
+ value: 68.987
1771
+ - type: recall_at_5
1772
+ value: 78.158
1773
+ - task:
1774
+ type: Retrieval
1775
+ dataset:
1776
+ name: MTEB QuoraRetrieval
1777
+ type: mteb/quora
1778
+ config: default
1779
+ split: test
1780
+ revision: None
1781
+ metrics:
1782
+ - type: map_at_1
1783
+ value: 72.538
1784
+ - type: map_at_10
1785
+ value: 86.702
1786
+ - type: map_at_100
1787
+ value: 87.31
1788
+ - type: map_at_1000
1789
+ value: 87.323
1790
+ - type: map_at_3
1791
+ value: 83.87
1792
+ - type: map_at_5
1793
+ value: 85.682
1794
+ - type: mrr_at_1
1795
+ value: 83.31
1796
+ - type: mrr_at_10
1797
+ value: 89.225
1798
+ - type: mrr_at_100
1799
+ value: 89.30399999999999
1800
+ - type: mrr_at_1000
1801
+ value: 89.30399999999999
1802
+ - type: mrr_at_3
1803
+ value: 88.44300000000001
1804
+ - type: mrr_at_5
1805
+ value: 89.005
1806
+ - type: ndcg_at_1
1807
+ value: 83.32000000000001
1808
+ - type: ndcg_at_10
1809
+ value: 90.095
1810
+ - type: ndcg_at_100
1811
+ value: 91.12
1812
+ - type: ndcg_at_1000
1813
+ value: 91.179
1814
+ - type: ndcg_at_3
1815
+ value: 87.606
1816
+ - type: ndcg_at_5
1817
+ value: 89.031
1818
+ - type: precision_at_1
1819
+ value: 83.32000000000001
1820
+ - type: precision_at_10
1821
+ value: 13.641
1822
+ - type: precision_at_100
1823
+ value: 1.541
1824
+ - type: precision_at_1000
1825
+ value: 0.157
1826
+ - type: precision_at_3
1827
+ value: 38.377
1828
+ - type: precision_at_5
1829
+ value: 25.162000000000003
1830
+ - type: recall_at_1
1831
+ value: 72.538
1832
+ - type: recall_at_10
1833
+ value: 96.47200000000001
1834
+ - type: recall_at_100
1835
+ value: 99.785
1836
+ - type: recall_at_1000
1837
+ value: 99.99900000000001
1838
+ - type: recall_at_3
1839
+ value: 89.278
1840
+ - type: recall_at_5
1841
+ value: 93.367
1842
+ - task:
1843
+ type: Clustering
1844
+ dataset:
1845
+ name: MTEB RedditClustering
1846
+ type: mteb/reddit-clustering
1847
+ config: default
1848
+ split: test
1849
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1850
+ metrics:
1851
+ - type: v_measure
1852
+ value: 73.55219145406065
1853
+ - task:
1854
+ type: Clustering
1855
+ dataset:
1856
+ name: MTEB RedditClusteringP2P
1857
+ type: mteb/reddit-clustering-p2p
1858
+ config: default
1859
+ split: test
1860
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1861
+ metrics:
1862
+ - type: v_measure
1863
+ value: 74.13437105242755
1864
+ - task:
1865
+ type: Retrieval
1866
+ dataset:
1867
+ name: MTEB SCIDOCS
1868
+ type: mteb/scidocs
1869
+ config: default
1870
+ split: test
1871
+ revision: None
1872
+ metrics:
1873
+ - type: map_at_1
1874
+ value: 6.873
1875
+ - type: map_at_10
1876
+ value: 17.944
1877
+ - type: map_at_100
1878
+ value: 21.171
1879
+ - type: map_at_1000
1880
+ value: 21.528
1881
+ - type: map_at_3
1882
+ value: 12.415
1883
+ - type: map_at_5
1884
+ value: 15.187999999999999
1885
+ - type: mrr_at_1
1886
+ value: 33.800000000000004
1887
+ - type: mrr_at_10
1888
+ value: 46.455
1889
+ - type: mrr_at_100
1890
+ value: 47.378
1891
+ - type: mrr_at_1000
1892
+ value: 47.394999999999996
1893
+ - type: mrr_at_3
1894
+ value: 42.367
1895
+ - type: mrr_at_5
1896
+ value: 44.972
1897
+ - type: ndcg_at_1
1898
+ value: 33.800000000000004
1899
+ - type: ndcg_at_10
1900
+ value: 28.907
1901
+ - type: ndcg_at_100
1902
+ value: 39.695
1903
+ - type: ndcg_at_1000
1904
+ value: 44.582
1905
+ - type: ndcg_at_3
1906
+ value: 26.949
1907
+ - type: ndcg_at_5
1908
+ value: 23.988
1909
+ - type: precision_at_1
1910
+ value: 33.800000000000004
1911
+ - type: precision_at_10
1912
+ value: 15.079999999999998
1913
+ - type: precision_at_100
1914
+ value: 3.056
1915
+ - type: precision_at_1000
1916
+ value: 0.42100000000000004
1917
+ - type: precision_at_3
1918
+ value: 25.167
1919
+ - type: precision_at_5
1920
+ value: 21.26
1921
+ - type: recall_at_1
1922
+ value: 6.873
1923
+ - type: recall_at_10
1924
+ value: 30.568
1925
+ - type: recall_at_100
1926
+ value: 62.062
1927
+ - type: recall_at_1000
1928
+ value: 85.37700000000001
1929
+ - type: recall_at_3
1930
+ value: 15.312999999999999
1931
+ - type: recall_at_5
1932
+ value: 21.575
1933
+ - task:
1934
+ type: STS
1935
+ dataset:
1936
+ name: MTEB SICK-R
1937
+ type: mteb/sickr-sts
1938
+ config: default
1939
+ split: test
1940
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1941
+ metrics:
1942
+ - type: cos_sim_pearson
1943
+ value: 82.37009118256057
1944
+ - type: cos_sim_spearman
1945
+ value: 79.27986395671529
1946
+ - type: euclidean_pearson
1947
+ value: 79.18037715442115
1948
+ - type: euclidean_spearman
1949
+ value: 79.28004791561621
1950
+ - type: manhattan_pearson
1951
+ value: 79.34062972800541
1952
+ - type: manhattan_spearman
1953
+ value: 79.43106695543402
1954
+ - task:
1955
+ type: STS
1956
+ dataset:
1957
+ name: MTEB STS12
1958
+ type: mteb/sts12-sts
1959
+ config: default
1960
+ split: test
1961
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1962
+ metrics:
1963
+ - type: cos_sim_pearson
1964
+ value: 87.48474767383833
1965
+ - type: cos_sim_spearman
1966
+ value: 79.54505388752513
1967
+ - type: euclidean_pearson
1968
+ value: 83.43282704179565
1969
+ - type: euclidean_spearman
1970
+ value: 79.54579919925405
1971
+ - type: manhattan_pearson
1972
+ value: 83.77564492427952
1973
+ - type: manhattan_spearman
1974
+ value: 79.84558396989286
1975
+ - task:
1976
+ type: STS
1977
+ dataset:
1978
+ name: MTEB STS13
1979
+ type: mteb/sts13-sts
1980
+ config: default
1981
+ split: test
1982
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1983
+ metrics:
1984
+ - type: cos_sim_pearson
1985
+ value: 88.803698035802
1986
+ - type: cos_sim_spearman
1987
+ value: 88.83451367754881
1988
+ - type: euclidean_pearson
1989
+ value: 88.28939285711628
1990
+ - type: euclidean_spearman
1991
+ value: 88.83528996073112
1992
+ - type: manhattan_pearson
1993
+ value: 88.28017412671795
1994
+ - type: manhattan_spearman
1995
+ value: 88.9228828016344
1996
+ - task:
1997
+ type: STS
1998
+ dataset:
1999
+ name: MTEB STS14
2000
+ type: mteb/sts14-sts
2001
+ config: default
2002
+ split: test
2003
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2004
+ metrics:
2005
+ - type: cos_sim_pearson
2006
+ value: 85.27469288153428
2007
+ - type: cos_sim_spearman
2008
+ value: 83.87477064876288
2009
+ - type: euclidean_pearson
2010
+ value: 84.2601737035379
2011
+ - type: euclidean_spearman
2012
+ value: 83.87431082479074
2013
+ - type: manhattan_pearson
2014
+ value: 84.3621547772745
2015
+ - type: manhattan_spearman
2016
+ value: 84.12094375000423
2017
+ - task:
2018
+ type: STS
2019
+ dataset:
2020
+ name: MTEB STS15
2021
+ type: mteb/sts15-sts
2022
+ config: default
2023
+ split: test
2024
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2025
+ metrics:
2026
+ - type: cos_sim_pearson
2027
+ value: 88.12749863201587
2028
+ - type: cos_sim_spearman
2029
+ value: 88.54287568368565
2030
+ - type: euclidean_pearson
2031
+ value: 87.90429700607999
2032
+ - type: euclidean_spearman
2033
+ value: 88.5437689576261
2034
+ - type: manhattan_pearson
2035
+ value: 88.19276653356833
2036
+ - type: manhattan_spearman
2037
+ value: 88.99995393814679
2038
+ - task:
2039
+ type: STS
2040
+ dataset:
2041
+ name: MTEB STS16
2042
+ type: mteb/sts16-sts
2043
+ config: default
2044
+ split: test
2045
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2046
+ metrics:
2047
+ - type: cos_sim_pearson
2048
+ value: 85.68398747560902
2049
+ - type: cos_sim_spearman
2050
+ value: 86.48815303460574
2051
+ - type: euclidean_pearson
2052
+ value: 85.52356631237954
2053
+ - type: euclidean_spearman
2054
+ value: 86.486391949551
2055
+ - type: manhattan_pearson
2056
+ value: 85.67267981761788
2057
+ - type: manhattan_spearman
2058
+ value: 86.7073696332485
2059
+ - task:
2060
+ type: STS
2061
+ dataset:
2062
+ name: MTEB STS17 (en-en)
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ config: en-en
2065
+ split: test
2066
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2067
+ metrics:
2068
+ - type: cos_sim_pearson
2069
+ value: 88.9057107443124
2070
+ - type: cos_sim_spearman
2071
+ value: 88.7312168757697
2072
+ - type: euclidean_pearson
2073
+ value: 88.72810439714794
2074
+ - type: euclidean_spearman
2075
+ value: 88.71976185854771
2076
+ - type: manhattan_pearson
2077
+ value: 88.50433745949111
2078
+ - type: manhattan_spearman
2079
+ value: 88.51726175544195
2080
+ - task:
2081
+ type: STS
2082
+ dataset:
2083
+ name: MTEB STS22 (en)
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ config: en
2086
+ split: test
2087
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2088
+ metrics:
2089
+ - type: cos_sim_pearson
2090
+ value: 67.59391795109886
2091
+ - type: cos_sim_spearman
2092
+ value: 66.87613008631367
2093
+ - type: euclidean_pearson
2094
+ value: 69.23198488262217
2095
+ - type: euclidean_spearman
2096
+ value: 66.85427723013692
2097
+ - type: manhattan_pearson
2098
+ value: 69.50730124841084
2099
+ - type: manhattan_spearman
2100
+ value: 67.10404669820792
2101
+ - task:
2102
+ type: STS
2103
+ dataset:
2104
+ name: MTEB STSBenchmark
2105
+ type: mteb/stsbenchmark-sts
2106
+ config: default
2107
+ split: test
2108
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2109
+ metrics:
2110
+ - type: cos_sim_pearson
2111
+ value: 87.0820605344619
2112
+ - type: cos_sim_spearman
2113
+ value: 86.8518089863434
2114
+ - type: euclidean_pearson
2115
+ value: 86.31087134689284
2116
+ - type: euclidean_spearman
2117
+ value: 86.8518520517941
2118
+ - type: manhattan_pearson
2119
+ value: 86.47203796160612
2120
+ - type: manhattan_spearman
2121
+ value: 87.1080149734421
2122
+ - task:
2123
+ type: Reranking
2124
+ dataset:
2125
+ name: MTEB SciDocsRR
2126
+ type: mteb/scidocs-reranking
2127
+ config: default
2128
+ split: test
2129
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2130
+ metrics:
2131
+ - type: map
2132
+ value: 89.09255369305481
2133
+ - type: mrr
2134
+ value: 97.10323445617563
2135
+ - task:
2136
+ type: Retrieval
2137
+ dataset:
2138
+ name: MTEB SciFact
2139
+ type: mteb/scifact
2140
+ config: default
2141
+ split: test
2142
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2143
+ metrics:
2144
+ - type: map_at_1
2145
+ value: 61.260999999999996
2146
+ - type: map_at_10
2147
+ value: 74.043
2148
+ - type: map_at_100
2149
+ value: 74.37700000000001
2150
+ - type: map_at_1000
2151
+ value: 74.384
2152
+ - type: map_at_3
2153
+ value: 71.222
2154
+ - type: map_at_5
2155
+ value: 72.875
2156
+ - type: mrr_at_1
2157
+ value: 64.333
2158
+ - type: mrr_at_10
2159
+ value: 74.984
2160
+ - type: mrr_at_100
2161
+ value: 75.247
2162
+ - type: mrr_at_1000
2163
+ value: 75.25500000000001
2164
+ - type: mrr_at_3
2165
+ value: 73.167
2166
+ - type: mrr_at_5
2167
+ value: 74.35000000000001
2168
+ - type: ndcg_at_1
2169
+ value: 64.333
2170
+ - type: ndcg_at_10
2171
+ value: 79.06
2172
+ - type: ndcg_at_100
2173
+ value: 80.416
2174
+ - type: ndcg_at_1000
2175
+ value: 80.55600000000001
2176
+ - type: ndcg_at_3
2177
+ value: 74.753
2178
+ - type: ndcg_at_5
2179
+ value: 76.97500000000001
2180
+ - type: precision_at_1
2181
+ value: 64.333
2182
+ - type: precision_at_10
2183
+ value: 10.567
2184
+ - type: precision_at_100
2185
+ value: 1.1199999999999999
2186
+ - type: precision_at_1000
2187
+ value: 0.11299999999999999
2188
+ - type: precision_at_3
2189
+ value: 29.889
2190
+ - type: precision_at_5
2191
+ value: 19.533
2192
+ - type: recall_at_1
2193
+ value: 61.260999999999996
2194
+ - type: recall_at_10
2195
+ value: 93.167
2196
+ - type: recall_at_100
2197
+ value: 99.0
2198
+ - type: recall_at_1000
2199
+ value: 100.0
2200
+ - type: recall_at_3
2201
+ value: 81.667
2202
+ - type: recall_at_5
2203
+ value: 87.394
2204
+ - task:
2205
+ type: PairClassification
2206
+ dataset:
2207
+ name: MTEB SprintDuplicateQuestions
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ config: default
2210
+ split: test
2211
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2212
+ metrics:
2213
+ - type: cos_sim_accuracy
2214
+ value: 99.71980198019801
2215
+ - type: cos_sim_ap
2216
+ value: 92.81616007802704
2217
+ - type: cos_sim_f1
2218
+ value: 85.17548454688318
2219
+ - type: cos_sim_precision
2220
+ value: 89.43894389438944
2221
+ - type: cos_sim_recall
2222
+ value: 81.3
2223
+ - type: dot_accuracy
2224
+ value: 99.71980198019801
2225
+ - type: dot_ap
2226
+ value: 92.81398760591358
2227
+ - type: dot_f1
2228
+ value: 85.17548454688318
2229
+ - type: dot_precision
2230
+ value: 89.43894389438944
2231
+ - type: dot_recall
2232
+ value: 81.3
2233
+ - type: euclidean_accuracy
2234
+ value: 99.71980198019801
2235
+ - type: euclidean_ap
2236
+ value: 92.81560637245072
2237
+ - type: euclidean_f1
2238
+ value: 85.17548454688318
2239
+ - type: euclidean_precision
2240
+ value: 89.43894389438944
2241
+ - type: euclidean_recall
2242
+ value: 81.3
2243
+ - type: manhattan_accuracy
2244
+ value: 99.73069306930694
2245
+ - type: manhattan_ap
2246
+ value: 93.14005487480794
2247
+ - type: manhattan_f1
2248
+ value: 85.56263269639068
2249
+ - type: manhattan_precision
2250
+ value: 91.17647058823529
2251
+ - type: manhattan_recall
2252
+ value: 80.60000000000001
2253
+ - type: max_accuracy
2254
+ value: 99.73069306930694
2255
+ - type: max_ap
2256
+ value: 93.14005487480794
2257
+ - type: max_f1
2258
+ value: 85.56263269639068
2259
+ - task:
2260
+ type: Clustering
2261
+ dataset:
2262
+ name: MTEB StackExchangeClustering
2263
+ type: mteb/stackexchange-clustering
2264
+ config: default
2265
+ split: test
2266
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2267
+ metrics:
2268
+ - type: v_measure
2269
+ value: 79.86443362395185
2270
+ - task:
2271
+ type: Clustering
2272
+ dataset:
2273
+ name: MTEB StackExchangeClusteringP2P
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ config: default
2276
+ split: test
2277
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2278
+ metrics:
2279
+ - type: v_measure
2280
+ value: 49.40897096662564
2281
+ - task:
2282
+ type: Reranking
2283
+ dataset:
2284
+ name: MTEB StackOverflowDupQuestions
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ config: default
2287
+ split: test
2288
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2289
+ metrics:
2290
+ - type: map
2291
+ value: 55.66040806627947
2292
+ - type: mrr
2293
+ value: 56.58670475766064
2294
+ - task:
2295
+ type: Summarization
2296
+ dataset:
2297
+ name: MTEB SummEval
2298
+ type: mteb/summeval
2299
+ config: default
2300
+ split: test
2301
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2302
+ metrics:
2303
+ - type: cos_sim_pearson
2304
+ value: 31.51015090598575
2305
+ - type: cos_sim_spearman
2306
+ value: 31.35016454939226
2307
+ - type: dot_pearson
2308
+ value: 31.5150068731
2309
+ - type: dot_spearman
2310
+ value: 31.34790869023487
2311
+ - task:
2312
+ type: Retrieval
2313
+ dataset:
2314
+ name: MTEB TRECCOVID
2315
+ type: mteb/trec-covid
2316
+ config: default
2317
+ split: test
2318
+ revision: None
2319
+ metrics:
2320
+ - type: map_at_1
2321
+ value: 0.254
2322
+ - type: map_at_10
2323
+ value: 2.064
2324
+ - type: map_at_100
2325
+ value: 12.909
2326
+ - type: map_at_1000
2327
+ value: 31.761
2328
+ - type: map_at_3
2329
+ value: 0.738
2330
+ - type: map_at_5
2331
+ value: 1.155
2332
+ - type: mrr_at_1
2333
+ value: 96.0
2334
+ - type: mrr_at_10
2335
+ value: 98.0
2336
+ - type: mrr_at_100
2337
+ value: 98.0
2338
+ - type: mrr_at_1000
2339
+ value: 98.0
2340
+ - type: mrr_at_3
2341
+ value: 98.0
2342
+ - type: mrr_at_5
2343
+ value: 98.0
2344
+ - type: ndcg_at_1
2345
+ value: 93.0
2346
+ - type: ndcg_at_10
2347
+ value: 82.258
2348
+ - type: ndcg_at_100
2349
+ value: 64.34
2350
+ - type: ndcg_at_1000
2351
+ value: 57.912
2352
+ - type: ndcg_at_3
2353
+ value: 90.827
2354
+ - type: ndcg_at_5
2355
+ value: 86.79
2356
+ - type: precision_at_1
2357
+ value: 96.0
2358
+ - type: precision_at_10
2359
+ value: 84.8
2360
+ - type: precision_at_100
2361
+ value: 66.0
2362
+ - type: precision_at_1000
2363
+ value: 25.356
2364
+ - type: precision_at_3
2365
+ value: 94.667
2366
+ - type: precision_at_5
2367
+ value: 90.4
2368
+ - type: recall_at_1
2369
+ value: 0.254
2370
+ - type: recall_at_10
2371
+ value: 2.1950000000000003
2372
+ - type: recall_at_100
2373
+ value: 16.088
2374
+ - type: recall_at_1000
2375
+ value: 54.559000000000005
2376
+ - type: recall_at_3
2377
+ value: 0.75
2378
+ - type: recall_at_5
2379
+ value: 1.191
2380
+ - task:
2381
+ type: Retrieval
2382
+ dataset:
2383
+ name: MTEB Touche2020
2384
+ type: mteb/touche2020
2385
+ config: default
2386
+ split: test
2387
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2388
+ metrics:
2389
+ - type: map_at_1
2390
+ value: 2.976
2391
+ - type: map_at_10
2392
+ value: 11.389000000000001
2393
+ - type: map_at_100
2394
+ value: 18.429000000000002
2395
+ - type: map_at_1000
2396
+ value: 20.113
2397
+ - type: map_at_3
2398
+ value: 6.483
2399
+ - type: map_at_5
2400
+ value: 8.770999999999999
2401
+ - type: mrr_at_1
2402
+ value: 40.816
2403
+ - type: mrr_at_10
2404
+ value: 58.118
2405
+ - type: mrr_at_100
2406
+ value: 58.489999999999995
2407
+ - type: mrr_at_1000
2408
+ value: 58.489999999999995
2409
+ - type: mrr_at_3
2410
+ value: 53.061
2411
+ - type: mrr_at_5
2412
+ value: 57.041
2413
+ - type: ndcg_at_1
2414
+ value: 40.816
2415
+ - type: ndcg_at_10
2416
+ value: 30.567
2417
+ - type: ndcg_at_100
2418
+ value: 42.44
2419
+ - type: ndcg_at_1000
2420
+ value: 53.480000000000004
2421
+ - type: ndcg_at_3
2422
+ value: 36.016
2423
+ - type: ndcg_at_5
2424
+ value: 34.257
2425
+ - type: precision_at_1
2426
+ value: 42.857
2427
+ - type: precision_at_10
2428
+ value: 25.714
2429
+ - type: precision_at_100
2430
+ value: 8.429
2431
+ - type: precision_at_1000
2432
+ value: 1.5939999999999999
2433
+ - type: precision_at_3
2434
+ value: 36.735
2435
+ - type: precision_at_5
2436
+ value: 33.878
2437
+ - type: recall_at_1
2438
+ value: 2.976
2439
+ - type: recall_at_10
2440
+ value: 17.854999999999997
2441
+ - type: recall_at_100
2442
+ value: 51.833
2443
+ - type: recall_at_1000
2444
+ value: 86.223
2445
+ - type: recall_at_3
2446
+ value: 7.887
2447
+ - type: recall_at_5
2448
+ value: 12.026
2449
+ - task:
2450
+ type: Classification
2451
+ dataset:
2452
+ name: MTEB ToxicConversationsClassification
2453
+ type: mteb/toxic_conversations_50k
2454
+ config: default
2455
+ split: test
2456
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2457
+ metrics:
2458
+ - type: accuracy
2459
+ value: 85.1174
2460
+ - type: ap
2461
+ value: 30.169441069345748
2462
+ - type: f1
2463
+ value: 69.79254701873245
2464
+ - task:
2465
+ type: Classification
2466
+ dataset:
2467
+ name: MTEB TweetSentimentExtractionClassification
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ config: default
2470
+ split: test
2471
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2472
+ metrics:
2473
+ - type: accuracy
2474
+ value: 72.58347481607245
2475
+ - type: f1
2476
+ value: 72.74877295564937
2477
+ - task:
2478
+ type: Clustering
2479
+ dataset:
2480
+ name: MTEB TwentyNewsgroupsClustering
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ config: default
2483
+ split: test
2484
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2485
+ metrics:
2486
+ - type: v_measure
2487
+ value: 53.90586138221305
2488
+ - task:
2489
+ type: PairClassification
2490
+ dataset:
2491
+ name: MTEB TwitterSemEval2015
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ config: default
2494
+ split: test
2495
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2496
+ metrics:
2497
+ - type: cos_sim_accuracy
2498
+ value: 87.35769207844072
2499
+ - type: cos_sim_ap
2500
+ value: 77.9645072410354
2501
+ - type: cos_sim_f1
2502
+ value: 71.32352941176471
2503
+ - type: cos_sim_precision
2504
+ value: 66.5903890160183
2505
+ - type: cos_sim_recall
2506
+ value: 76.78100263852242
2507
+ - type: dot_accuracy
2508
+ value: 87.37557370209214
2509
+ - type: dot_ap
2510
+ value: 77.96250046429908
2511
+ - type: dot_f1
2512
+ value: 71.28932757557064
2513
+ - type: dot_precision
2514
+ value: 66.95249130938586
2515
+ - type: dot_recall
2516
+ value: 76.22691292875989
2517
+ - type: euclidean_accuracy
2518
+ value: 87.35173153722357
2519
+ - type: euclidean_ap
2520
+ value: 77.96520460741593
2521
+ - type: euclidean_f1
2522
+ value: 71.32470733210104
2523
+ - type: euclidean_precision
2524
+ value: 66.91329479768785
2525
+ - type: euclidean_recall
2526
+ value: 76.35883905013192
2527
+ - type: manhattan_accuracy
2528
+ value: 87.25636287774931
2529
+ - type: manhattan_ap
2530
+ value: 77.77752485611796
2531
+ - type: manhattan_f1
2532
+ value: 71.18148599269183
2533
+ - type: manhattan_precision
2534
+ value: 66.10859728506787
2535
+ - type: manhattan_recall
2536
+ value: 77.0976253298153
2537
+ - type: max_accuracy
2538
+ value: 87.37557370209214
2539
+ - type: max_ap
2540
+ value: 77.96520460741593
2541
+ - type: max_f1
2542
+ value: 71.32470733210104
2543
+ - task:
2544
+ type: PairClassification
2545
+ dataset:
2546
+ name: MTEB TwitterURLCorpus
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ config: default
2549
+ split: test
2550
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2551
+ metrics:
2552
+ - type: cos_sim_accuracy
2553
+ value: 89.38176737687739
2554
+ - type: cos_sim_ap
2555
+ value: 86.58811861657401
2556
+ - type: cos_sim_f1
2557
+ value: 79.09430644097604
2558
+ - type: cos_sim_precision
2559
+ value: 75.45085977911366
2560
+ - type: cos_sim_recall
2561
+ value: 83.10748383122882
2562
+ - type: dot_accuracy
2563
+ value: 89.38370784336554
2564
+ - type: dot_ap
2565
+ value: 86.58840606004333
2566
+ - type: dot_f1
2567
+ value: 79.10179860068133
2568
+ - type: dot_precision
2569
+ value: 75.44546153308643
2570
+ - type: dot_recall
2571
+ value: 83.13058207576223
2572
+ - type: euclidean_accuracy
2573
+ value: 89.38564830985369
2574
+ - type: euclidean_ap
2575
+ value: 86.58820721061164
2576
+ - type: euclidean_f1
2577
+ value: 79.09070942235888
2578
+ - type: euclidean_precision
2579
+ value: 75.38729937194697
2580
+ - type: euclidean_recall
2581
+ value: 83.17677856482906
2582
+ - type: manhattan_accuracy
2583
+ value: 89.40699344122326
2584
+ - type: manhattan_ap
2585
+ value: 86.60631843011362
2586
+ - type: manhattan_f1
2587
+ value: 79.14949970570925
2588
+ - type: manhattan_precision
2589
+ value: 75.78191039729502
2590
+ - type: manhattan_recall
2591
+ value: 82.83030489682784
2592
+ - type: max_accuracy
2593
+ value: 89.40699344122326
2594
+ - type: max_ap
2595
+ value: 86.60631843011362
2596
+ - type: max_f1
2597
+ value: 79.14949970570925
2598
+ - task:
2599
+ type: STS
2600
+ dataset:
2601
+ name: MTEB AFQMC
2602
+ type: C-MTEB/AFQMC
2603
+ config: default
2604
+ split: validation
2605
+ revision: b44c3b011063adb25877c13823db83bb193913c4
2606
+ metrics:
2607
+ - type: cos_sim_pearson
2608
+ value: 65.58442135663871
2609
+ - type: cos_sim_spearman
2610
+ value: 72.2538631361313
2611
+ - type: euclidean_pearson
2612
+ value: 70.97255486607429
2613
+ - type: euclidean_spearman
2614
+ value: 72.25374250228647
2615
+ - type: manhattan_pearson
2616
+ value: 70.83250199989911
2617
+ - type: manhattan_spearman
2618
+ value: 72.14819496536272
2619
+ - task:
2620
+ type: STS
2621
+ dataset:
2622
+ name: MTEB ATEC
2623
+ type: C-MTEB/ATEC
2624
+ config: default
2625
+ split: test
2626
+ revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
2627
+ metrics:
2628
+ - type: cos_sim_pearson
2629
+ value: 59.99478404929932
2630
+ - type: cos_sim_spearman
2631
+ value: 62.61836216999812
2632
+ - type: euclidean_pearson
2633
+ value: 66.86429811933593
2634
+ - type: euclidean_spearman
2635
+ value: 62.6183520374191
2636
+ - type: manhattan_pearson
2637
+ value: 66.8063778911633
2638
+ - type: manhattan_spearman
2639
+ value: 62.569607573241115
2640
+ - task:
2641
+ type: Classification
2642
+ dataset:
2643
+ name: MTEB AmazonReviewsClassification (zh)
2644
+ type: mteb/amazon_reviews_multi
2645
+ config: zh
2646
+ split: test
2647
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
2648
+ metrics:
2649
+ - type: accuracy
2650
+ value: 53.98400000000001
2651
+ - type: f1
2652
+ value: 51.21447361350723
2653
+ - task:
2654
+ type: STS
2655
+ dataset:
2656
+ name: MTEB BQ
2657
+ type: C-MTEB/BQ
2658
+ config: default
2659
+ split: test
2660
+ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
2661
+ metrics:
2662
+ - type: cos_sim_pearson
2663
+ value: 79.11941660686553
2664
+ - type: cos_sim_spearman
2665
+ value: 81.25029594540435
2666
+ - type: euclidean_pearson
2667
+ value: 82.06973504238826
2668
+ - type: euclidean_spearman
2669
+ value: 81.2501989488524
2670
+ - type: manhattan_pearson
2671
+ value: 82.10094630392753
2672
+ - type: manhattan_spearman
2673
+ value: 81.27987244392389
2674
+ - task:
2675
+ type: Clustering
2676
+ dataset:
2677
+ name: MTEB CLSClusteringP2P
2678
+ type: C-MTEB/CLSClusteringP2P
2679
+ config: default
2680
+ split: test
2681
+ revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
2682
+ metrics:
2683
+ - type: v_measure
2684
+ value: 47.07270168705156
2685
+ - task:
2686
+ type: Clustering
2687
+ dataset:
2688
+ name: MTEB CLSClusteringS2S
2689
+ type: C-MTEB/CLSClusteringS2S
2690
+ config: default
2691
+ split: test
2692
+ revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
2693
+ metrics:
2694
+ - type: v_measure
2695
+ value: 45.98511703185043
2696
+ - task:
2697
+ type: Reranking
2698
+ dataset:
2699
+ name: MTEB CMedQAv1
2700
+ type: C-MTEB/CMedQAv1-reranking
2701
+ config: default
2702
+ split: test
2703
+ revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
2704
+ metrics:
2705
+ - type: map
2706
+ value: 88.19895157194931
2707
+ - type: mrr
2708
+ value: 90.21424603174603
2709
+ - task:
2710
+ type: Reranking
2711
+ dataset:
2712
+ name: MTEB CMedQAv2
2713
+ type: C-MTEB/CMedQAv2-reranking
2714
+ config: default
2715
+ split: test
2716
+ revision: 23d186750531a14a0357ca22cd92d712fd512ea0
2717
+ metrics:
2718
+ - type: map
2719
+ value: 88.03317320980119
2720
+ - type: mrr
2721
+ value: 89.9461507936508
2722
+ - task:
2723
+ type: Retrieval
2724
+ dataset:
2725
+ name: MTEB CmedqaRetrieval
2726
+ type: C-MTEB/CmedqaRetrieval
2727
+ config: default
2728
+ split: dev
2729
+ revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
2730
+ metrics:
2731
+ - type: map_at_1
2732
+ value: 29.037000000000003
2733
+ - type: map_at_10
2734
+ value: 42.001
2735
+ - type: map_at_100
2736
+ value: 43.773
2737
+ - type: map_at_1000
2738
+ value: 43.878
2739
+ - type: map_at_3
2740
+ value: 37.637
2741
+ - type: map_at_5
2742
+ value: 40.034
2743
+ - type: mrr_at_1
2744
+ value: 43.136
2745
+ - type: mrr_at_10
2746
+ value: 51.158
2747
+ - type: mrr_at_100
2748
+ value: 52.083
2749
+ - type: mrr_at_1000
2750
+ value: 52.12
2751
+ - type: mrr_at_3
2752
+ value: 48.733
2753
+ - type: mrr_at_5
2754
+ value: 50.025
2755
+ - type: ndcg_at_1
2756
+ value: 43.136
2757
+ - type: ndcg_at_10
2758
+ value: 48.685
2759
+ - type: ndcg_at_100
2760
+ value: 55.513
2761
+ - type: ndcg_at_1000
2762
+ value: 57.242000000000004
2763
+ - type: ndcg_at_3
2764
+ value: 43.329
2765
+ - type: ndcg_at_5
2766
+ value: 45.438
2767
+ - type: precision_at_1
2768
+ value: 43.136
2769
+ - type: precision_at_10
2770
+ value: 10.56
2771
+ - type: precision_at_100
2772
+ value: 1.6129999999999998
2773
+ - type: precision_at_1000
2774
+ value: 0.184
2775
+ - type: precision_at_3
2776
+ value: 24.064
2777
+ - type: precision_at_5
2778
+ value: 17.269000000000002
2779
+ - type: recall_at_1
2780
+ value: 29.037000000000003
2781
+ - type: recall_at_10
2782
+ value: 59.245000000000005
2783
+ - type: recall_at_100
2784
+ value: 87.355
2785
+ - type: recall_at_1000
2786
+ value: 98.74000000000001
2787
+ - type: recall_at_3
2788
+ value: 42.99
2789
+ - type: recall_at_5
2790
+ value: 49.681999999999995
2791
+ - task:
2792
+ type: PairClassification
2793
+ dataset:
2794
+ name: MTEB Cmnli
2795
+ type: C-MTEB/CMNLI
2796
+ config: default
2797
+ split: validation
2798
+ revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
2799
+ metrics:
2800
+ - type: cos_sim_accuracy
2801
+ value: 82.68190018039687
2802
+ - type: cos_sim_ap
2803
+ value: 90.18017125327886
2804
+ - type: cos_sim_f1
2805
+ value: 83.64080906868193
2806
+ - type: cos_sim_precision
2807
+ value: 79.7076890489303
2808
+ - type: cos_sim_recall
2809
+ value: 87.98223053542202
2810
+ - type: dot_accuracy
2811
+ value: 82.68190018039687
2812
+ - type: dot_ap
2813
+ value: 90.18782350103646
2814
+ - type: dot_f1
2815
+ value: 83.64242087729039
2816
+ - type: dot_precision
2817
+ value: 79.65313028764805
2818
+ - type: dot_recall
2819
+ value: 88.05237315875614
2820
+ - type: euclidean_accuracy
2821
+ value: 82.68190018039687
2822
+ - type: euclidean_ap
2823
+ value: 90.1801957900632
2824
+ - type: euclidean_f1
2825
+ value: 83.63636363636364
2826
+ - type: euclidean_precision
2827
+ value: 79.52772506852203
2828
+ - type: euclidean_recall
2829
+ value: 88.19265840542437
2830
+ - type: manhattan_accuracy
2831
+ value: 82.14070956103427
2832
+ - type: manhattan_ap
2833
+ value: 89.96178420101427
2834
+ - type: manhattan_f1
2835
+ value: 83.21087838578791
2836
+ - type: manhattan_precision
2837
+ value: 78.35605121850475
2838
+ - type: manhattan_recall
2839
+ value: 88.70703764320785
2840
+ - type: max_accuracy
2841
+ value: 82.68190018039687
2842
+ - type: max_ap
2843
+ value: 90.18782350103646
2844
+ - type: max_f1
2845
+ value: 83.64242087729039
2846
+ - task:
2847
+ type: Retrieval
2848
+ dataset:
2849
+ name: MTEB CovidRetrieval
2850
+ type: C-MTEB/CovidRetrieval
2851
+ config: default
2852
+ split: dev
2853
+ revision: 1271c7809071a13532e05f25fb53511ffce77117
2854
+ metrics:
2855
+ - type: map_at_1
2856
+ value: 72.234
2857
+ - type: map_at_10
2858
+ value: 80.10000000000001
2859
+ - type: map_at_100
2860
+ value: 80.36
2861
+ - type: map_at_1000
2862
+ value: 80.363
2863
+ - type: map_at_3
2864
+ value: 78.315
2865
+ - type: map_at_5
2866
+ value: 79.607
2867
+ - type: mrr_at_1
2868
+ value: 72.392
2869
+ - type: mrr_at_10
2870
+ value: 80.117
2871
+ - type: mrr_at_100
2872
+ value: 80.36999999999999
2873
+ - type: mrr_at_1000
2874
+ value: 80.373
2875
+ - type: mrr_at_3
2876
+ value: 78.469
2877
+ - type: mrr_at_5
2878
+ value: 79.633
2879
+ - type: ndcg_at_1
2880
+ value: 72.392
2881
+ - type: ndcg_at_10
2882
+ value: 83.651
2883
+ - type: ndcg_at_100
2884
+ value: 84.749
2885
+ - type: ndcg_at_1000
2886
+ value: 84.83000000000001
2887
+ - type: ndcg_at_3
2888
+ value: 80.253
2889
+ - type: ndcg_at_5
2890
+ value: 82.485
2891
+ - type: precision_at_1
2892
+ value: 72.392
2893
+ - type: precision_at_10
2894
+ value: 9.557
2895
+ - type: precision_at_100
2896
+ value: 1.004
2897
+ - type: precision_at_1000
2898
+ value: 0.101
2899
+ - type: precision_at_3
2900
+ value: 28.732000000000003
2901
+ - type: precision_at_5
2902
+ value: 18.377
2903
+ - type: recall_at_1
2904
+ value: 72.234
2905
+ - type: recall_at_10
2906
+ value: 94.573
2907
+ - type: recall_at_100
2908
+ value: 99.368
2909
+ - type: recall_at_1000
2910
+ value: 100.0
2911
+ - type: recall_at_3
2912
+ value: 85.669
2913
+ - type: recall_at_5
2914
+ value: 91.01700000000001
2915
+ - task:
2916
+ type: Retrieval
2917
+ dataset:
2918
+ name: MTEB DuRetrieval
2919
+ type: C-MTEB/DuRetrieval
2920
+ config: default
2921
+ split: dev
2922
+ revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
2923
+ metrics:
2924
+ - type: map_at_1
2925
+ value: 26.173999999999996
2926
+ - type: map_at_10
2927
+ value: 80.04
2928
+ - type: map_at_100
2929
+ value: 82.94500000000001
2930
+ - type: map_at_1000
2931
+ value: 82.98100000000001
2932
+ - type: map_at_3
2933
+ value: 55.562999999999995
2934
+ - type: map_at_5
2935
+ value: 69.89800000000001
2936
+ - type: mrr_at_1
2937
+ value: 89.5
2938
+ - type: mrr_at_10
2939
+ value: 92.996
2940
+ - type: mrr_at_100
2941
+ value: 93.06400000000001
2942
+ - type: mrr_at_1000
2943
+ value: 93.065
2944
+ - type: mrr_at_3
2945
+ value: 92.658
2946
+ - type: mrr_at_5
2947
+ value: 92.84599999999999
2948
+ - type: ndcg_at_1
2949
+ value: 89.5
2950
+ - type: ndcg_at_10
2951
+ value: 87.443
2952
+ - type: ndcg_at_100
2953
+ value: 90.253
2954
+ - type: ndcg_at_1000
2955
+ value: 90.549
2956
+ - type: ndcg_at_3
2957
+ value: 85.874
2958
+ - type: ndcg_at_5
2959
+ value: 84.842
2960
+ - type: precision_at_1
2961
+ value: 89.5
2962
+ - type: precision_at_10
2963
+ value: 41.805
2964
+ - type: precision_at_100
2965
+ value: 4.827
2966
+ - type: precision_at_1000
2967
+ value: 0.49
2968
+ - type: precision_at_3
2969
+ value: 76.85
2970
+ - type: precision_at_5
2971
+ value: 64.8
2972
+ - type: recall_at_1
2973
+ value: 26.173999999999996
2974
+ - type: recall_at_10
2975
+ value: 89.101
2976
+ - type: recall_at_100
2977
+ value: 98.08099999999999
2978
+ - type: recall_at_1000
2979
+ value: 99.529
2980
+ - type: recall_at_3
2981
+ value: 57.902
2982
+ - type: recall_at_5
2983
+ value: 74.602
2984
+ - task:
2985
+ type: Retrieval
2986
+ dataset:
2987
+ name: MTEB EcomRetrieval
2988
+ type: C-MTEB/EcomRetrieval
2989
+ config: default
2990
+ split: dev
2991
+ revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
2992
+ metrics:
2993
+ - type: map_at_1
2994
+ value: 56.10000000000001
2995
+ - type: map_at_10
2996
+ value: 66.15299999999999
2997
+ - type: map_at_100
2998
+ value: 66.625
2999
+ - type: map_at_1000
3000
+ value: 66.636
3001
+ - type: map_at_3
3002
+ value: 63.632999999999996
3003
+ - type: map_at_5
3004
+ value: 65.293
3005
+ - type: mrr_at_1
3006
+ value: 56.10000000000001
3007
+ - type: mrr_at_10
3008
+ value: 66.15299999999999
3009
+ - type: mrr_at_100
3010
+ value: 66.625
3011
+ - type: mrr_at_1000
3012
+ value: 66.636
3013
+ - type: mrr_at_3
3014
+ value: 63.632999999999996
3015
+ - type: mrr_at_5
3016
+ value: 65.293
3017
+ - type: ndcg_at_1
3018
+ value: 56.10000000000001
3019
+ - type: ndcg_at_10
3020
+ value: 71.146
3021
+ - type: ndcg_at_100
3022
+ value: 73.27799999999999
3023
+ - type: ndcg_at_1000
3024
+ value: 73.529
3025
+ - type: ndcg_at_3
3026
+ value: 66.09
3027
+ - type: ndcg_at_5
3028
+ value: 69.08999999999999
3029
+ - type: precision_at_1
3030
+ value: 56.10000000000001
3031
+ - type: precision_at_10
3032
+ value: 8.68
3033
+ - type: precision_at_100
3034
+ value: 0.964
3035
+ - type: precision_at_1000
3036
+ value: 0.098
3037
+ - type: precision_at_3
3038
+ value: 24.4
3039
+ - type: precision_at_5
3040
+ value: 16.1
3041
+ - type: recall_at_1
3042
+ value: 56.10000000000001
3043
+ - type: recall_at_10
3044
+ value: 86.8
3045
+ - type: recall_at_100
3046
+ value: 96.39999999999999
3047
+ - type: recall_at_1000
3048
+ value: 98.3
3049
+ - type: recall_at_3
3050
+ value: 73.2
3051
+ - type: recall_at_5
3052
+ value: 80.5
3053
+ - task:
3054
+ type: Classification
3055
+ dataset:
3056
+ name: MTEB IFlyTek
3057
+ type: C-MTEB/IFlyTek-classification
3058
+ config: default
3059
+ split: validation
3060
+ revision: 421605374b29664c5fc098418fe20ada9bd55f8a
3061
+ metrics:
3062
+ - type: accuracy
3063
+ value: 54.52096960369373
3064
+ - type: f1
3065
+ value: 40.930845295808695
3066
+ - task:
3067
+ type: Classification
3068
+ dataset:
3069
+ name: MTEB JDReview
3070
+ type: C-MTEB/JDReview-classification
3071
+ config: default
3072
+ split: test
3073
+ revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
3074
+ metrics:
3075
+ - type: accuracy
3076
+ value: 86.51031894934334
3077
+ - type: ap
3078
+ value: 55.9516014323483
3079
+ - type: f1
3080
+ value: 81.54813679326381
3081
+ - task:
3082
+ type: STS
3083
+ dataset:
3084
+ name: MTEB LCQMC
3085
+ type: C-MTEB/LCQMC
3086
+ config: default
3087
+ split: test
3088
+ revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
3089
+ metrics:
3090
+ - type: cos_sim_pearson
3091
+ value: 69.67437838574276
3092
+ - type: cos_sim_spearman
3093
+ value: 73.81314174653045
3094
+ - type: euclidean_pearson
3095
+ value: 72.63430276680275
3096
+ - type: euclidean_spearman
3097
+ value: 73.81358736777001
3098
+ - type: manhattan_pearson
3099
+ value: 72.58743833842829
3100
+ - type: manhattan_spearman
3101
+ value: 73.7590419009179
3102
+ - task:
3103
+ type: Reranking
3104
+ dataset:
3105
+ name: MTEB MMarcoReranking
3106
+ type: C-MTEB/Mmarco-reranking
3107
+ config: default
3108
+ split: dev
3109
+ revision: None
3110
+ metrics:
3111
+ - type: map
3112
+ value: 31.648613483640254
3113
+ - type: mrr
3114
+ value: 30.37420634920635
3115
+ - task:
3116
+ type: Retrieval
3117
+ dataset:
3118
+ name: MTEB MMarcoRetrieval
3119
+ type: C-MTEB/MMarcoRetrieval
3120
+ config: default
3121
+ split: dev
3122
+ revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
3123
+ metrics:
3124
+ - type: map_at_1
3125
+ value: 73.28099999999999
3126
+ - type: map_at_10
3127
+ value: 81.977
3128
+ - type: map_at_100
3129
+ value: 82.222
3130
+ - type: map_at_1000
3131
+ value: 82.22699999999999
3132
+ - type: map_at_3
3133
+ value: 80.441
3134
+ - type: map_at_5
3135
+ value: 81.46600000000001
3136
+ - type: mrr_at_1
3137
+ value: 75.673
3138
+ - type: mrr_at_10
3139
+ value: 82.41000000000001
3140
+ - type: mrr_at_100
3141
+ value: 82.616
3142
+ - type: mrr_at_1000
3143
+ value: 82.621
3144
+ - type: mrr_at_3
3145
+ value: 81.094
3146
+ - type: mrr_at_5
3147
+ value: 81.962
3148
+ - type: ndcg_at_1
3149
+ value: 75.673
3150
+ - type: ndcg_at_10
3151
+ value: 85.15599999999999
3152
+ - type: ndcg_at_100
3153
+ value: 86.151
3154
+ - type: ndcg_at_1000
3155
+ value: 86.26899999999999
3156
+ - type: ndcg_at_3
3157
+ value: 82.304
3158
+ - type: ndcg_at_5
3159
+ value: 84.009
3160
+ - type: precision_at_1
3161
+ value: 75.673
3162
+ - type: precision_at_10
3163
+ value: 10.042
3164
+ - type: precision_at_100
3165
+ value: 1.052
3166
+ - type: precision_at_1000
3167
+ value: 0.106
3168
+ - type: precision_at_3
3169
+ value: 30.673000000000002
3170
+ - type: precision_at_5
3171
+ value: 19.326999999999998
3172
+ - type: recall_at_1
3173
+ value: 73.28099999999999
3174
+ - type: recall_at_10
3175
+ value: 94.446
3176
+ - type: recall_at_100
3177
+ value: 98.737
3178
+ - type: recall_at_1000
3179
+ value: 99.649
3180
+ - type: recall_at_3
3181
+ value: 86.984
3182
+ - type: recall_at_5
3183
+ value: 91.024
3184
+ - task:
3185
+ type: Classification
3186
+ dataset:
3187
+ name: MTEB MassiveIntentClassification (zh-CN)
3188
+ type: mteb/amazon_massive_intent
3189
+ config: zh-CN
3190
+ split: test
3191
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
3192
+ metrics:
3193
+ - type: accuracy
3194
+ value: 81.08607935440484
3195
+ - type: f1
3196
+ value: 78.24879986066307
3197
+ - task:
3198
+ type: Classification
3199
+ dataset:
3200
+ name: MTEB MassiveScenarioClassification (zh-CN)
3201
+ type: mteb/amazon_massive_scenario
3202
+ config: zh-CN
3203
+ split: test
3204
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3205
+ metrics:
3206
+ - type: accuracy
3207
+ value: 86.05917955615332
3208
+ - type: f1
3209
+ value: 85.05279279434997
3210
+ - task:
3211
+ type: Retrieval
3212
+ dataset:
3213
+ name: MTEB MedicalRetrieval
3214
+ type: C-MTEB/MedicalRetrieval
3215
+ config: default
3216
+ split: dev
3217
+ revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
3218
+ metrics:
3219
+ - type: map_at_1
3220
+ value: 56.2
3221
+ - type: map_at_10
3222
+ value: 62.57899999999999
3223
+ - type: map_at_100
3224
+ value: 63.154999999999994
3225
+ - type: map_at_1000
3226
+ value: 63.193
3227
+ - type: map_at_3
3228
+ value: 61.217
3229
+ - type: map_at_5
3230
+ value: 62.012
3231
+ - type: mrr_at_1
3232
+ value: 56.3
3233
+ - type: mrr_at_10
3234
+ value: 62.629000000000005
3235
+ - type: mrr_at_100
3236
+ value: 63.205999999999996
3237
+ - type: mrr_at_1000
3238
+ value: 63.244
3239
+ - type: mrr_at_3
3240
+ value: 61.267
3241
+ - type: mrr_at_5
3242
+ value: 62.062
3243
+ - type: ndcg_at_1
3244
+ value: 56.2
3245
+ - type: ndcg_at_10
3246
+ value: 65.592
3247
+ - type: ndcg_at_100
3248
+ value: 68.657
3249
+ - type: ndcg_at_1000
3250
+ value: 69.671
3251
+ - type: ndcg_at_3
3252
+ value: 62.808
3253
+ - type: ndcg_at_5
3254
+ value: 64.24499999999999
3255
+ - type: precision_at_1
3256
+ value: 56.2
3257
+ - type: precision_at_10
3258
+ value: 7.5
3259
+ - type: precision_at_100
3260
+ value: 0.899
3261
+ - type: precision_at_1000
3262
+ value: 0.098
3263
+ - type: precision_at_3
3264
+ value: 22.467000000000002
3265
+ - type: precision_at_5
3266
+ value: 14.180000000000001
3267
+ - type: recall_at_1
3268
+ value: 56.2
3269
+ - type: recall_at_10
3270
+ value: 75.0
3271
+ - type: recall_at_100
3272
+ value: 89.9
3273
+ - type: recall_at_1000
3274
+ value: 97.89999999999999
3275
+ - type: recall_at_3
3276
+ value: 67.4
3277
+ - type: recall_at_5
3278
+ value: 70.89999999999999
3279
+ - task:
3280
+ type: Classification
3281
+ dataset:
3282
+ name: MTEB MultilingualSentiment
3283
+ type: C-MTEB/MultilingualSentiment-classification
3284
+ config: default
3285
+ split: validation
3286
+ revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
3287
+ metrics:
3288
+ - type: accuracy
3289
+ value: 76.87666666666667
3290
+ - type: f1
3291
+ value: 76.7317686219665
3292
+ - task:
3293
+ type: PairClassification
3294
+ dataset:
3295
+ name: MTEB Ocnli
3296
+ type: C-MTEB/OCNLI
3297
+ config: default
3298
+ split: validation
3299
+ revision: 66e76a618a34d6d565d5538088562851e6daa7ec
3300
+ metrics:
3301
+ - type: cos_sim_accuracy
3302
+ value: 79.64266377910124
3303
+ - type: cos_sim_ap
3304
+ value: 84.78274442344829
3305
+ - type: cos_sim_f1
3306
+ value: 81.16947472745292
3307
+ - type: cos_sim_precision
3308
+ value: 76.47058823529412
3309
+ - type: cos_sim_recall
3310
+ value: 86.48363252375924
3311
+ - type: dot_accuracy
3312
+ value: 79.64266377910124
3313
+ - type: dot_ap
3314
+ value: 84.7851404063692
3315
+ - type: dot_f1
3316
+ value: 81.16947472745292
3317
+ - type: dot_precision
3318
+ value: 76.47058823529412
3319
+ - type: dot_recall
3320
+ value: 86.48363252375924
3321
+ - type: euclidean_accuracy
3322
+ value: 79.64266377910124
3323
+ - type: euclidean_ap
3324
+ value: 84.78068373762378
3325
+ - type: euclidean_f1
3326
+ value: 81.14794656110837
3327
+ - type: euclidean_precision
3328
+ value: 76.35009310986965
3329
+ - type: euclidean_recall
3330
+ value: 86.58922914466737
3331
+ - type: manhattan_accuracy
3332
+ value: 79.48023822414727
3333
+ - type: manhattan_ap
3334
+ value: 84.72928897427576
3335
+ - type: manhattan_f1
3336
+ value: 81.32084770823064
3337
+ - type: manhattan_precision
3338
+ value: 76.24768946395564
3339
+ - type: manhattan_recall
3340
+ value: 87.11721224920802
3341
+ - type: max_accuracy
3342
+ value: 79.64266377910124
3343
+ - type: max_ap
3344
+ value: 84.7851404063692
3345
+ - type: max_f1
3346
+ value: 81.32084770823064
3347
+ - task:
3348
+ type: Classification
3349
+ dataset:
3350
+ name: MTEB OnlineShopping
3351
+ type: C-MTEB/OnlineShopping-classification
3352
+ config: default
3353
+ split: test
3354
+ revision: e610f2ebd179a8fda30ae534c3878750a96db120
3355
+ metrics:
3356
+ - type: accuracy
3357
+ value: 94.3
3358
+ - type: ap
3359
+ value: 92.8664032274438
3360
+ - type: f1
3361
+ value: 94.29311102997727
3362
+ - task:
3363
+ type: STS
3364
+ dataset:
3365
+ name: MTEB PAWSX
3366
+ type: C-MTEB/PAWSX
3367
+ config: default
3368
+ split: test
3369
+ revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
3370
+ metrics:
3371
+ - type: cos_sim_pearson
3372
+ value: 48.51392279882909
3373
+ - type: cos_sim_spearman
3374
+ value: 54.06338895994974
3375
+ - type: euclidean_pearson
3376
+ value: 52.58480559573412
3377
+ - type: euclidean_spearman
3378
+ value: 54.06417276612201
3379
+ - type: manhattan_pearson
3380
+ value: 52.69525121721343
3381
+ - type: manhattan_spearman
3382
+ value: 54.048147455389675
3383
+ - task:
3384
+ type: STS
3385
+ dataset:
3386
+ name: MTEB QBQTC
3387
+ type: C-MTEB/QBQTC
3388
+ config: default
3389
+ split: test
3390
+ revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
3391
+ metrics:
3392
+ - type: cos_sim_pearson
3393
+ value: 29.728387290757325
3394
+ - type: cos_sim_spearman
3395
+ value: 31.366121633635284
3396
+ - type: euclidean_pearson
3397
+ value: 29.14588368552961
3398
+ - type: euclidean_spearman
3399
+ value: 31.36764411112844
3400
+ - type: manhattan_pearson
3401
+ value: 29.63517350523121
3402
+ - type: manhattan_spearman
3403
+ value: 31.94157020583762
3404
+ - task:
3405
+ type: STS
3406
+ dataset:
3407
+ name: MTEB STS22 (zh)
3408
+ type: mteb/sts22-crosslingual-sts
3409
+ config: zh
3410
+ split: test
3411
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
3412
+ metrics:
3413
+ - type: cos_sim_pearson
3414
+ value: 63.64868296271406
3415
+ - type: cos_sim_spearman
3416
+ value: 66.12800618164744
3417
+ - type: euclidean_pearson
3418
+ value: 63.21405767340238
3419
+ - type: euclidean_spearman
3420
+ value: 66.12786567790748
3421
+ - type: manhattan_pearson
3422
+ value: 64.04300276525848
3423
+ - type: manhattan_spearman
3424
+ value: 66.5066857145652
3425
+ - task:
3426
+ type: STS
3427
+ dataset:
3428
+ name: MTEB STSB
3429
+ type: C-MTEB/STSB
3430
+ config: default
3431
+ split: test
3432
+ revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
3433
+ metrics:
3434
+ - type: cos_sim_pearson
3435
+ value: 81.2302623912794
3436
+ - type: cos_sim_spearman
3437
+ value: 81.16833673266562
3438
+ - type: euclidean_pearson
3439
+ value: 79.47647843876024
3440
+ - type: euclidean_spearman
3441
+ value: 81.16944349524972
3442
+ - type: manhattan_pearson
3443
+ value: 79.84947238492208
3444
+ - type: manhattan_spearman
3445
+ value: 81.64626599410026
3446
+ - task:
3447
+ type: Reranking
3448
+ dataset:
3449
+ name: MTEB T2Reranking
3450
+ type: C-MTEB/T2Reranking
3451
+ config: default
3452
+ split: dev
3453
+ revision: 76631901a18387f85eaa53e5450019b87ad58ef9
3454
+ metrics:
3455
+ - type: map
3456
+ value: 67.80129586475687
3457
+ - type: mrr
3458
+ value: 77.77402311635554
3459
+ - task:
3460
+ type: Retrieval
3461
+ dataset:
3462
+ name: MTEB T2Retrieval
3463
+ type: C-MTEB/T2Retrieval
3464
+ config: default
3465
+ split: dev
3466
+ revision: 8731a845f1bf500a4f111cf1070785c793d10e64
3467
+ metrics:
3468
+ - type: map_at_1
3469
+ value: 28.666999999999998
3470
+ - type: map_at_10
3471
+ value: 81.063
3472
+ - type: map_at_100
3473
+ value: 84.504
3474
+ - type: map_at_1000
3475
+ value: 84.552
3476
+ - type: map_at_3
3477
+ value: 56.897
3478
+ - type: map_at_5
3479
+ value: 70.073
3480
+ - type: mrr_at_1
3481
+ value: 92.087
3482
+ - type: mrr_at_10
3483
+ value: 94.132
3484
+ - type: mrr_at_100
3485
+ value: 94.19800000000001
3486
+ - type: mrr_at_1000
3487
+ value: 94.19999999999999
3488
+ - type: mrr_at_3
3489
+ value: 93.78999999999999
3490
+ - type: mrr_at_5
3491
+ value: 94.002
3492
+ - type: ndcg_at_1
3493
+ value: 92.087
3494
+ - type: ndcg_at_10
3495
+ value: 87.734
3496
+ - type: ndcg_at_100
3497
+ value: 90.736
3498
+ - type: ndcg_at_1000
3499
+ value: 91.184
3500
+ - type: ndcg_at_3
3501
+ value: 88.78
3502
+ - type: ndcg_at_5
3503
+ value: 87.676
3504
+ - type: precision_at_1
3505
+ value: 92.087
3506
+ - type: precision_at_10
3507
+ value: 43.46
3508
+ - type: precision_at_100
3509
+ value: 5.07
3510
+ - type: precision_at_1000
3511
+ value: 0.518
3512
+ - type: precision_at_3
3513
+ value: 77.49000000000001
3514
+ - type: precision_at_5
3515
+ value: 65.194
3516
+ - type: recall_at_1
3517
+ value: 28.666999999999998
3518
+ - type: recall_at_10
3519
+ value: 86.632
3520
+ - type: recall_at_100
3521
+ value: 96.646
3522
+ - type: recall_at_1000
3523
+ value: 98.917
3524
+ - type: recall_at_3
3525
+ value: 58.333999999999996
3526
+ - type: recall_at_5
3527
+ value: 72.974
3528
+ - task:
3529
+ type: Classification
3530
+ dataset:
3531
+ name: MTEB TNews
3532
+ type: C-MTEB/TNews-classification
3533
+ config: default
3534
+ split: validation
3535
+ revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
3536
+ metrics:
3537
+ - type: accuracy
3538
+ value: 52.971999999999994
3539
+ - type: f1
3540
+ value: 50.2898280984929
3541
+ - task:
3542
+ type: Clustering
3543
+ dataset:
3544
+ name: MTEB ThuNewsClusteringP2P
3545
+ type: C-MTEB/ThuNewsClusteringP2P
3546
+ config: default
3547
+ split: test
3548
+ revision: 5798586b105c0434e4f0fe5e767abe619442cf93
3549
+ metrics:
3550
+ - type: v_measure
3551
+ value: 86.0797948663824
3552
+ - task:
3553
+ type: Clustering
3554
+ dataset:
3555
+ name: MTEB ThuNewsClusteringS2S
3556
+ type: C-MTEB/ThuNewsClusteringS2S
3557
+ config: default
3558
+ split: test
3559
+ revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
3560
+ metrics:
3561
+ - type: v_measure
3562
+ value: 85.10759092255017
3563
+ - task:
3564
+ type: Retrieval
3565
+ dataset:
3566
+ name: MTEB VideoRetrieval
3567
+ type: C-MTEB/VideoRetrieval
3568
+ config: default
3569
+ split: dev
3570
+ revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
3571
+ metrics:
3572
+ - type: map_at_1
3573
+ value: 65.60000000000001
3574
+ - type: map_at_10
3575
+ value: 74.773
3576
+ - type: map_at_100
3577
+ value: 75.128
3578
+ - type: map_at_1000
3579
+ value: 75.136
3580
+ - type: map_at_3
3581
+ value: 73.05
3582
+ - type: map_at_5
3583
+ value: 74.13499999999999
3584
+ - type: mrr_at_1
3585
+ value: 65.60000000000001
3586
+ - type: mrr_at_10
3587
+ value: 74.773
3588
+ - type: mrr_at_100
3589
+ value: 75.128
3590
+ - type: mrr_at_1000
3591
+ value: 75.136
3592
+ - type: mrr_at_3
3593
+ value: 73.05
3594
+ - type: mrr_at_5
3595
+ value: 74.13499999999999
3596
+ - type: ndcg_at_1
3597
+ value: 65.60000000000001
3598
+ - type: ndcg_at_10
3599
+ value: 78.84299999999999
3600
+ - type: ndcg_at_100
3601
+ value: 80.40899999999999
3602
+ - type: ndcg_at_1000
3603
+ value: 80.57
3604
+ - type: ndcg_at_3
3605
+ value: 75.40599999999999
3606
+ - type: ndcg_at_5
3607
+ value: 77.351
3608
+ - type: precision_at_1
3609
+ value: 65.60000000000001
3610
+ - type: precision_at_10
3611
+ value: 9.139999999999999
3612
+ - type: precision_at_100
3613
+ value: 0.984
3614
+ - type: precision_at_1000
3615
+ value: 0.1
3616
+ - type: precision_at_3
3617
+ value: 27.400000000000002
3618
+ - type: precision_at_5
3619
+ value: 17.380000000000003
3620
+ - type: recall_at_1
3621
+ value: 65.60000000000001
3622
+ - type: recall_at_10
3623
+ value: 91.4
3624
+ - type: recall_at_100
3625
+ value: 98.4
3626
+ - type: recall_at_1000
3627
+ value: 99.6
3628
+ - type: recall_at_3
3629
+ value: 82.19999999999999
3630
+ - type: recall_at_5
3631
+ value: 86.9
3632
+ - task:
3633
+ type: Classification
3634
+ dataset:
3635
+ name: MTEB Waimai
3636
+ type: C-MTEB/waimai-classification
3637
+ config: default
3638
+ split: test
3639
+ revision: 339287def212450dcaa9df8c22bf93e9980c7023
3640
+ metrics:
3641
+ - type: accuracy
3642
+ value: 89.47
3643
+ - type: ap
3644
+ value: 75.59561751845389
3645
+ - type: f1
3646
+ value: 87.95207751382563
3647
+ ---
3648
+
3649
+ # fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF
3650
+ This model was converted to GGUF format from [`Alibaba-NLP/gte-Qwen2-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
3651
+ Refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) for more details on the model.
3652
+
3653
+ ## Use with llama.cpp
3654
+ Install llama.cpp through brew (works on Mac and Linux)
3655
+
3656
+ ```bash
3657
+ brew install llama.cpp
3658
+
3659
+ ```
3660
+ Invoke the llama.cpp server or the CLI.
3661
+
3662
+ ### CLI:
3663
+ ```bash
3664
+ llama-cli --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
3665
+ ```
3666
+
3667
+ ### Server:
3668
+ ```bash
3669
+ llama-server --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -c 2048
3670
+ ```
3671
+
3672
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
3673
+
3674
+ Step 1: Clone llama.cpp from GitHub.
3675
+ ```
3676
+ git clone https://github.com/ggerganov/llama.cpp
3677
+ ```
3678
+
3679
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
3680
+ ```
3681
+ cd llama.cpp && LLAMA_CURL=1 make
3682
+ ```
3683
+
3684
+ Step 3: Run inference through the main binary.
3685
+ ```
3686
+ ./llama-cli --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
3687
+ ```
3688
+ or
3689
+ ```
3690
+ ./llama-server --hf-repo fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF --hf-file gte-qwen2-7b-instruct-q8_0.gguf -c 2048
3691
+ ```