--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8B-instruct-GNER results: [] language: - en --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false # chat_template: llama3 datasets: - path: /home/ftcourse/sample_data/crossner_ai_train.jsonl type: alpaca # datasets: # - path: fozziethebeat/alpaca_messages_2k_test # type: chat_template # field_messages: messages # message_field_role: role # message_field_content: content # roles: # user: # - user # assistant: # - assistant dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out hub_model_id: femT-data/llama-3.1-8B-instruct-GNER sequence_len: 4096 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# llama-3.1-8B-instruct-GNER This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co./NousResearch/Meta-Llama-3-8B-Instruct) on the Crossner_ai dataset. It achieves the following results on the evaluation set: - Loss: 0.0363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5951 | 0.0187 | 1 | 0.6405 | | 0.1134 | 0.2617 | 14 | 0.0841 | | 0.0224 | 0.5234 | 28 | 0.0434 | | 0.0423 | 0.7850 | 42 | 0.0363 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1