--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: vc-01-bert-finetuned results: [] --- # vc-01-bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0074 - Validation Loss: 0.4494 - Train Recall: 0.9247 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Recall | Epoch | |:----------:|:---------------:|:------------:|:-----:| | 0.3152 | 0.3003 | 0.9383 | 0 | | 0.1993 | 0.2504 | 0.9036 | 1 | | 0.1250 | 0.2717 | 0.9232 | 2 | | 0.0654 | 0.3074 | 0.8870 | 3 | | 0.0347 | 0.3127 | 0.9232 | 4 | | 0.0268 | 0.4317 | 0.9217 | 5 | | 0.0146 | 0.4449 | 0.9066 | 6 | | 0.0092 | 0.4419 | 0.9066 | 7 | | 0.0074 | 0.4494 | 0.9247 | 8 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3